Inadvertent failure of power transformers has serious consequences on the power system reliability, economics and the revenue accrual. Insulation is the weakest link in the power transformer prompting periodic inspection of the status of insulation at different points in time. A close Monitoring of the electrical, chemical and such other properties on insulation as are sensitive to the amount of time-dependent degradation becomes mandatory to judge the status of the equipment. Data-driven Diagnostic Testing and Condition Monitoring (DTCM) specific to power transformer is the aspect in focus. Authors develop a Monte Carlo approach for augmenting the rather scanty experimental data normally acquired using Proto-types of power transformers. Also described is a validation procedure for estimating the accuracy of the Model so developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.