Glitches correspond to sudden jumps of rotation frequency (ν) and its derivative (
) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996, and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of this pulsar that occurred in 2004 and 2011 for which we discovered delayed spin-up processes, and present refined parameters of the largest glitch, which occurred in 2017. The initial rising time of the glitch is determined as <0.48 hr. The two glitches that occurred in 2004 and 2011 had delayed spin-up time scales (τ
1) of 1.7 ± 0.8 days and 1.6 ± 0.4 days, respectively. We also carried out a statistical study of these five glitches with observed spin-up processes. We find that the Δν versus
relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process (
) and recovery process (Δν
d2), their time scales (τ
1, τ
2), and permanent changes in spin frequency (Δν
p) and total frequency step (Δν
g) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches.
The Hard X-ray Modulation Telescope (HXMT or also dubbed as Insight-HXMT) is China's first astronomical satellite. It was launched on 15 th June 2017 in JiuQuan, China and is currently in service smoothly. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we introduce the mission and its progresses in aspects of payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and preliminary results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.