The capability of the explicit numerical methods to simulate accurately the real cutting process is investigated in this research work. Smoothed particle hydrodynamics - SPH, classical Lagrangian finite element method - FEM and Multi-Material Arbitrary Lagrangian Eulerian - ALE methods are chosen for the modeling and simulation of the orthogonal metal cutting process of AISI H13 in LS-DYNA. The cutting tool is modeled as a rigid FEM body that incrementally penetrates into the flexible deformable workpiece. At each numerical model, the dynamic elastoplastic behavior of the workpiece material is investigated by taking into account the Johnson-Cook (J-C) constitutive strength material model. The influence of the J-C parameter values found in literature to the models is explored. The obtained numerical SPH, FEM and ALE results of the estimated cutting and thrust forces, stress, plastic strain and thermal distributions are compared with results found in the literature. This comparison, leads to valuable conclusions for the performance of the three methods, concerning the approximation accuracy, model development complexity and computational time demands. Based on these conclusions the SPH method is chosen to simulate the experimentally performed orthogonal cut of AISI 1045. The obtained SPH numerical results outline its advantages among the other explicit simulation methods.
The machinability of a steel workpiece through conventional and Laser-Assisted Machining (LAM) is studied by the help of the Finite Element Method (FEM). In LAM, the laser beam is applied as a heat source to ensure sufficient local heating of the workpiece at a certain distance from the cutting tool and the machinability of materials is increased since the values of the cutting forces are decreased. A thermostructural FEM model is developed to simulate the conventional and the LAM orthogonal cutting of AISI H-13 steel. The Johnson-Cook material model that takes into account the effect of plastic strain, strain rate and temperature, along with a fracture model, is used in the simulations. For varying feed rate, parametric simulations are carried out, for different test cases of the laser beam diameter and the laser heat flux. Key engineering parameters, like cutting forces, temperature distributions, Von Mises stresses and plastic strains, are compared for both cutting processes. This comparison leads to important notifications on the influence of the cutting and laser parameters to LAM. The obtained results indicate that LAM may improve the machinability of AISI H-13 steel by reducing the cutting forces to a maximum percentage of ~15%.
The current research focuses on the characterization of the produced heat affected zone when laser heats AISI H13 steel, AISI 1045 steel and Ti6Al4V alloy workpieces via finite element simulations and experimental investigation. The surface roughness designedly varies on the surface of the samples and its influence on the absorption of laser light is investigated. Experiments are conducted at 1-4 W laser power and for two scanning speeds of 2 and 100 mm/min. A 3D transient thermo-structural finite element model for a moving Gaussian laser heat source is developed to simulate the micromachining process and predict the depth and width of the heat affected zone. The Johnson-Cook material model that takes into account the effect of plastic strain, strain rate and temperature, along with a fracture model, is adapted to the simulations. A good agreement between the experimental data and the simulation results is found. The depth and width of the heat affected zone strongly depend on the laser parameters and material properties of the irradiated samples. This study constitutes the basis to the optimization and improvement of the laser assisted micromachining process parameters and provides key insights on the roughness-absorptivity relation for the three metallic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.