Planococcus ficus, the vine mealybug, is the dominant mealybug pest of grapes in South Africa. To provide an alternative for chemical control, entomopathogenic nematodes (EPNs) were investigated as a biological control agent to be used in an integrated pest management system. Four local EPN species were screened for efficacy against female P. ficus, the most potent of which were Heterorhabditis noenieputensis, with 90% mortality, and Steinernema yirgalemense, with 63%. Since S. yirgalemense was previously shown to be highly effective against a range of pests, the effects of temperature and humidity on the infectivity of S. yirgalemense to female P. ficus were also assessed. The application of S. yirgalemense at 25°C yielded the highest mortality, of 72%, followed by 45% mortality at 30°C, and only 9% mortality when applied at 15°C. Steinernema yirgalemense performed best at 100% relative humidity (RH), resulting in 70% mortality. Decreasing RH levels resulted in decreased mortality (61% mortality at 80% RH, 40% mortality at 60% RH). As a soil-based organism, S. yirgalemense is most effective as a biocontrol agent of P. ficus under conditions of moderate temperature and high humidity. Its lethality to P. ficus, and its status as an indigenous species, indicate its promise as a potential biocontrol agent of the vine mealybug.
Entomopathogenic nematodes (EPNs), of the families Steinernema and Heterorhabditis, are insect parasites that have been successfully used as biological control agents of soil-based insect pests on the North American and European continents. The success of nematodes as biological control agents of the soil stages of pest insects has led to research into their use for control of above-ground insect pests. Laboratorybased studies have shown exceptionally good control, in most cases, against such pests as mealybugs, codling moth and leaf miners. As the life stages of the above-ground insect pests have not co-evolved together with those of EPNs, they are, generally, more susceptible than the soil-based life stages. However, EPNs are susceptible to desiccation and vulnerable to UV radiation, so that ensuring their survival beyond soil environments is problematic. The impetus to avoid environmental stressors can cause EPNs to seek sheltered, cryptic habitats on foliage, where their target insect pest (such as mealybugs) may be found. The current paper provides an overview of information on the application of EPNs as a biocontrol agent for the control of insect pests above ground and on foliage, with particular reference to research done in South Africa.
The vine mealybug (Planococcus ficus) is regarded as a key mealybug pest of grapevines in South Africa, with entomopathogenic nematodes (EPNs) being touted as a potential alternative to chemical control, although their vulnerability to above-ground environmental conditions has limited their use. In this study, tests were conducted to assess the ability of adjuvants to increase the deposition of S. yirgalemense on grapevine leaves. The combination of Nu-Film-P ® and Zeba ® resulted in significantly more infective juveniles (30) being deposited per 4 cm 2 leaf disc than with either the control (14.8), or with Nu-Film-P ® (23.3), although not significantly more than with Zeba ® alone (29.2). The ability of S. yirgalemense, in conjunction with the two adjuvants, to control P. ficus on grapevine foliage was then assessed under controlled conditions. The application of S. yirgalemense with both Zeba ® and Nu-Film-P ® to P. ficus on leaf discs in a growth chamber resulted in 84% mortality, significantly greater than that attained by the application of S. yirgalemense with either Zeba ® (47%), or water alone (26%). Similar results were observed in a glasshouse trial, in which the combination of S. yirgalemense, Zeba ® and Nu-Film-P ® offered 88% control of P. ficus on leaf discs hung on potted vines, compared with the control that was achieved with S. yirgalemense with either Zeba ® (56%) or water alone (30%). This study demonstrates the potential of a combination of S. yirgalemense with adjuvants to give significant control of P. ficus on grapevine foliage, compared with using EPNs alone.
The vine mealybug, Planococcus ficus Signoret (Hemiptera: Pseudococcidae), is a key insect pest of South African grapevine. The ability of mealybugs to avoid or resist the action of chemical pesticides has led to the investigation of alternative control methods, such as the application of entomopathogenic nematodes (EPNs). However, EPN application faces challenges, due to the maladaptation of EPN species to aboveground conditions. In this study, the ability of adjuvants to improve the control of P. ficus in grapevine using an indigenous nematode species, Steinernema yirgalemense, was investigated. A trial was performed to assess EPN survival on grapevine foliage, when applied in the morning (high humidity / low temperature) compared with in the afternoon (high temperature / low humidity). In a semi-field trial, the combination of adjuvants Zeba ® and Nu-Film-P ® resulted in 66% control of P. ficus after 48 h, compared to the use of Zeba ® alone (43%), and EPNs alone (28%). Additionally, lower concentrations of EPNs showed predictably lower mortality rates of P. ficus. Significantly, higher EPN survival was recorded at each time interval in the morning, compared with the corresponding interval in the afternoon. This study demonstrates the ability of S. yirgalemense, when applied with adjuvants and at an appropriate time of day, to control P. ficus on grapevine, under semi-field conditions.
On a pasture in Washington, USA, with a historically high incidence of crooked calf (lupine-induced arthrogryposis), the north-facing half of each of five plants of Lupinus leucophyllus was shaded by constructing a tent with black 4-mm plastic stretching from the centre of the plant clump over to its north edge. The shading was left in place for 7 days, and thereafter, the shaded and unshaded halves of the lupine plants were harvested at midday, dried and stored at room temperature until analysis. There was no significant effect of the shade on the concentration of the teratogenic alkaloid anagyrine, but a significant difference was observed with 5,6-dehydrolupanine. A significant difference was also observed with unknown alkaloid F and total alkaloids. Given the small sample size, these results suggest further studies on the effects of shade on alkaloid concentration and plant palatability are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.