We address the question of probing the supercurrents in superconducting (SC) samples on a local scale by performing scanning tunneling spectroscopy (STS) experiments with a SC tip. In this configuration, we show that the tunneling conductance is highly sensitive to the Doppler shift term in the SC quasiparticle (QP) spectrum of the sample, thus allowing the local study of the superfluid velocity. Intrinsic screening currents, such as those surrounding the vortex cores in a type II SC in a magnetic field, are directly probed. With Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe(2), reveals both the vortex cores, on the scale of the SC coherence length xi, and the supercurrents, on the scale of the London penetration length lambda. A subtle interplay between the SC pair potential and the supercurrents at the vortex edge is observed. Our results open interesting prospects for the study of screening currents in any superconductor.
We introduce a mode of operation for studying the vortex phase in superconductors using scanning tunnelling microscopy (STM). While in the conventional STM method, the tip is scanned over a sample in which a fixed vortex pattern is prepared, in our "Lazy Fisherman" method the STM tip is kept fixed at a selected location while the vortices are being moved by varying the applied magnetic field. By continuously acquiring the local tunnelling conductance spectra, dI/dV(V), we detect the changes in the local density of states under the tip due to the vortex motion. With no need for scanning, the method permits one to extend the study of vortices to samples in which scanning is difficult or even impossible due to surface nonuniformity and allows one to study vortex dynamics. Using a statistical analysis of the spectra, we reconstruct the single vortex zero bias conductance profile. We apply the method to the c-axis face of an MgB2 single crystal sample and obtain a vortex profile with a coherence length, ξ of 57±2 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.