A new frequency modulation (FM) technique has been demonstrated which ennances the sensitivity of attractive mode force microscopy by an order of magnitude or more. Increased sensitivity is made possible by operating in a moderate vacuum ( < 10 -' Torr), which increases the Q of the vibrating cantilever. In the FM technique, the cantilever serves as the frequency determining element of an oscillator. Force gradients acting on the cantilever cause instantaneous frequency modulation of the oscillator output, which is demodulated with a FM detector. Unlike conventional "slope detection," the FM technique offers increased sensitivity through increased Q without restricting system bandwidth. Experimental comparisons of FM detection in vacuum (Q-50 000) versus slope detection in air (Q-100) demonstrated an improvement of more than 10 times in sensitivity for a fixed bandwidth. This improvement is evident in images of magnetic transitions on a thin-film CoPtCr magnetic disk. In the future, the increased sensitivity offered by this technique should extend the range of problems accessible by force microscopy.
Self-assembling materials spontaneously form structures at length scales of interest in nanotechnology. In the particular case of block copolymers, the thermodynamic driving forces for self-assembly are small, and low-energy defects can get easily trapped. We directed the assembly of defect-free arrays of isolated block copolymer domains at densities up to 1 terabit per square inch on chemically patterned surfaces. In comparing the assembled structures to the chemical pattern, the density is increased by a factor of four, the size is reduced by a factor of two, and the dimensional uniformity is vastly improved.
The atomic force microscope (AFM) can be used to image the surface of both conductors and nonconductors even if they are covered with water or aqueous solutions. An AFM was used that combines microfabricated cantilevers with a previously described optical lever system to monitor deflection. Images of mica demonstrate that atomic resolution is possible on rigid materials, thus opening the possibility of atomic-scale corrosion experiments on nonconductors. Images of polyalanine, an amino acid polymer, show the potential of the AFM for revealing the structure of molecules important in biology and medicine. Finally, a series of ten images of the polymerization of fibrin, the basic component of blood clots, illustrate the potential of the AFM for revealing subtle details of biological processes as they occur in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.