Dielectric properties of Al-epoxy composites were characterized as a function of composition, frequency, and temperature. The dielectric constant increased smoothly with an increase in the concentration of aluminum. An increase in dielectric constant was also observed with an increase in temperature as well as with a decrease in frequency. In general, dissipation factor values for composites with higher concentrations of aluminum were greater than those with lower volume content of aluminum. Also, the dissipation factor showed an increase both with a decrease in frequency and an increase in temperature. The increase in values of dielectric constant and dissipation factor with an increase in concentration of aluminum was attributed to interfacial polarization. The absence of any discontinuity in the plot of dielectric constant versus composition was ascribed to the absence of continuous aluminum chains in the composition range investigated. The increase in dielectric constant with a rise in temperature was attributed to the segmental mobility of the polymer molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.