A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.
Groundwater is a main source of drinking water for some rural areas. People in these rural areas are potentially at risk from elevated levels of arsenic (As) due to a lack of water treatment facilities. The objectives of this study were to (1) measure As concentrations in approximately 50 groundwater samples from rural domestic wells in the western United States, (2) explore the potential of cupric oxide (CuO) particles in removal of As from groundwater samples under natural conditions (i.e., without adding competing anions and adjusting the pH or oxidation state), and (3) determine the effects of As removal on the chemistry of groundwater samples. Forty-six groundwater well samples from rural domestic areas were tested in this study. More than 50% of these samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Limit (US EPA MCL) of 10 µg/L for As. CuO particles effectively removed As from groundwater samples across a wide range of pH (7.11 and 8.95) and concentrations of competing anions including phosphate (<0.05 to 3.06 mg/L), silica (<1 to 54.5 mg/L), and sulfate (1.3 to 735 mg/L). Removal of As showed minor effects on the chemistry of groundwater samples, therefore most of the water quality parameters remained within the US EPA MCLs. Overall, results of this study could help develop a simple one-step process to remove As from groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.