The research work presents, constrained network coding technique to ensure the successful data transmission based composite channel cmos technology using dielectric properties. The charge fragmentation and charge splitting are two components of the filtered switch domino (FSD) technique. Further behavior of selected switching is achieved using generator called conditional pulse generator which is employed in Multi Dynamic Node Domino (MDND) technique. Both FSD and MDND technique need wide area compared to existing single nodekeeper domino technique. The aim of this research is to minimize dissipation of power and to achieve less consumption of power. The proposed research, works by introducing the method namely Interference and throughput aware Optimized Multicast Routing Protocol (IT-OMRP). The main goal of this proposed research method is to introduce the system which can forward the data packets towards the destination securely and successfully. To achieve the bandwidth and throughput in optimized data transmission, proposed multicast tree is selected by Particle Swarm Optimization which will select the most optimal host node as the branches of multi cast tree. Here node selection is done by considering the objectives residual energy, residual bandwidth and throughput. After node selection multi cast routing is done with the concern of interference to ensure the reliable and successful data transmission. In case of transmission range size is higher than the coverage sense range, successful routing is ensured by selecting secondary host forwarders as a backup which will act as intermediate relay forwarders. The NS2 simulator is used to evaluate research outcome from which it is proved that the proposed technique tends to have increased packet delivery ratio than the existing work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.