[1] Using numerical models, we evaluate hydrogeological regime changes in high-latitude river basins under conditions of ground surface warming. These models describe transient heat-and fluid flow coupled to the hydrogeological impacts of phase-changes from ice to liquid water. We consider an idealized unconsolidated sedimentary aquifer system in which groundwater flow is driven by topography, representing a series of small drainage basins in riverine terrain of relatively subdued topography. Various temporal and spatial surface temperature conditions are considered to control the initial permafrost distributions for the simulations. The simulated rates of increase in groundwater contribution to streamflow during and after permafrost thaw, are in the order of magnitude comparable to hydrogeological regime changes over the past decades as reported for several (sub-)Arctic rivers. The simulations further show that two distinct features of the subsurface response control the temporal evolution of base flow increase: (1) shifts in aquifer permeability architecture during permafrost degradation and (2) uptake of water into aquifer storage when sub-permafrost hydraulic heads rise. Model analysis shows that the latter process delays base flow increase by several decades to centuries. In order to evaluate the relative importance of both processes in natural systems, the current hydraulic regime of sub-permafrost aquifer systems as well as patterns of permafrost heterogeneity, taliks and their hydraulic connectivity are insufficiently known.
[1] We show how fully distributed space-time measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber-optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross-flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole abstraction borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer.
Distributed Temperature Sensing (DTS) technology enables downhole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in‐well flow, and subsurface thermal property estimation. However, recent years have seen the further development of the use of DTS in an active mode (A‐DTS) for which heat sources are deployed. A suite of recent studies using A‐DTS downhole in hydrogeological investigations illustrate the wide range of different approaches and creativity in designing methodologies. The purpose of this review is to outline and discuss the various applications and limitations of DTS in downhole investigations for hydrogeological conditions and aquifer geological properties. To this end, we first review examples where passive DTS has been used to study hydrogeology via downhole applications. Secondly, we discuss and categorize current A‐DTS borehole methods into three types. These are thermal advection tests, hybrid cable flow logging, and heat pulse tests. We explore the various options with regards to cable installation, heating approach, duration, and spatial extent in order to improve their applicability in a range of settings. These determine the extent to which each method is sensitive to thermal properties, vertical in‐well flow, or natural gradient flow. Our review confirms that the application of DTS has significant advantages over discrete point temperature measurements, particularly in deep wells, and highlights the potential for further method developments in conjunction with other emerging hydrogeophysical tools.
We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s 21 elicited a 2.5 C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.