Post-translational modification of tau is common in human tauopathies. Bondulich et al. generate transgenic mice expressing low levels of a truncated form of tau (Tau35) that is associated with human tauopathy. Tau35 mice develop progressive tau neuropathology and cognitive impairment, modelling human disease. The approved drug 4-phenylbutyrate rescues these abnormalities.
Cerebral deposits of beta-amyloid (betaA) are a major feature in Alzheimer's disease. betaA is derived from amyloid precursor protein (APP). APP is subject to N- and O-glycosylation and undergoes a series of proteolytic cleavages that lead to the release of betaA or of a non-amyloidogenic secreted form of APP (APPs). We used primary neuronal and glial cultures to investigate how cholesterol affects the production and secretion of APPs. Exposure to cholesterol for 2 h did not change the neuronal release of APPs; after 6 h APPs release was slightly lower, whereas 24 h of exposure decreased APPs in the medium by approx. 60%. The time courses were similar in astrocytes and microglia preparations. To verify whether the effect of cholesterol was a consequence of membrane rigidification we tested the activity of ganglioside GM1 and prion protein fragment PrP 106-126, which affect membrane fluidity similarly to cholesterol, on APPs secretion. Neither altered the production of APPs. APP mRNA and the total amount of APP in the cells were slightly decreased by cholesterol after 2 and 24 h respectively. Immunoblot analysis of APP associated with neuronal cells and astrocytes indicated that cholesterol progressively decreased the glycosylated forms of the protein; a similar tendency was noted in cells treated with brefeldin A and monensin, two substances that interfere with protein glycosylation. The cell-surface biotinylation method showed that in cholesterol-treated cells APP reached the plasma membrane. Our results indicate that cholesterol decreases the secretion of APPs by interfering with APP maturation and inhibiting glycosylation of the protein; although APP is inserted in the membrane it is not cleaved by alpha-secretase.
Elucidating the mechanisms of alternative splicing in the brain is a prerequisite to the understanding of the pathogenesis of major neurological diseases linked to impairment of pre-mRNA alternative splicing. The gene trinucleotide repeat-containing 4 (TNRC4) is predicted to encode a member of the CELF (CUG-BP- and ETR-3-like factors) family of RNA-binding proteins containing a 15-18-residue polyglutamine sequence. The TNRC4 transcript is selectively expressed in the brain. Using an anti-peptide antibody against the predicted sequence, we establish the presence of TNRC4 as a approximately 50 kDa protein in the brain. Full-length TNRC4 displays nuclear and cytoplasmic localizations in transfected cells, whereas a C-terminally truncated mutant is essentially confined to the cytoplasm. TNRC4 is not recruited into inclusions formed by polyglutamine-expanded ataxin-1 or huntingtin. TNRC4 activates tau exon 10 (E10) inclusion at high efficiency in transfected cells. TNRC4 contains two consecutive N-terminal RNA recognition motifs (RRMs) separated from the C-terminal RRM. Deletion and point mutant analysis show that the activity of TNRC4 on tau E10 splicing is mainly mediated by the RNA-binding activity of the second RRM and involves an intronic element of the tau pre-mRNA. The polyglutamine sequence has no effect on the activity of TNRC4 on tau E10 splicing. This study represents the first characterization of TNRC4 and provides further insight into the mechanisms of brain-specific alternative splicing and their possible pathological implications.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer's disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed.
Cerebral deposits of beta-amyloid (betaA) are a major feature in Alzheimer's disease. betaA is derived from amyloid precursor protein (APP). APP is subject to N- and O-glycosylation and undergoes a series of proteolytic cleavages that lead to the release of betaA or of a non-amyloidogenic secreted form of APP (APPs). We used primary neuronal and glial cultures to investigate how cholesterol affects the production and secretion of APPs. Exposure to cholesterol for 2 h did not change the neuronal release of APPs; after 6 h APPs release was slightly lower, whereas 24 h of exposure decreased APPs in the medium by approx. 60%. The time courses were similar in astrocytes and microglia preparations. To verify whether the effect of cholesterol was a consequence of membrane rigidification we tested the activity of ganglioside GM1 and prion protein fragment PrP 106-126, which affect membrane fluidity similarly to cholesterol, on APPs secretion. Neither altered the production of APPs. APP mRNA and the total amount of APP in the cells were slightly decreased by cholesterol after 2 and 24 h respectively. Immunoblot analysis of APP associated with neuronal cells and astrocytes indicated that cholesterol progressively decreased the glycosylated forms of the protein; a similar tendency was noted in cells treated with brefeldin A and monensin, two substances that interfere with protein glycosylation. The cell-surface biotinylation method showed that in cholesterol-treated cells APP reached the plasma membrane. Our results indicate that cholesterol decreases the secretion of APPs by interfering with APP maturation and inhibiting glycosylation of the protein; although APP is inserted in the membrane it is not cleaved by alpha-secretase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.