[1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15-19 m/pixel, 362-3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.
Abstract. We report on a field experiment held near Silver Lake playa in the Mojave Desert in February 1999 with the Marsokhod rover. The payload (Descent Imager, PanCam, Mini-TES, and Robotic Arm Camera), data volumes, and data transmission/receipt windows simulated those planned for the Mars Surveyor mission selected for 2001. A central mast with a pan and tilt platform at 150 cm height carried a high-resolution color stereo imager to simulate the PanCam and a visible/near-infrared fiberoptic spectrometer (operating range 0.35-2.5 /xm). Monochrome stereo navigation cameras were mounted on the mast and the front and rear of the rover near the wheels. A field portable infrared spectroradiometer (operating range 8-14 /xm) simulated the Mini-TES. A Robotic Arm Camera, capable of close-up color imaging at 23 /xm/pixel resolution, was used in conjunction with the excavation of a trench into the subsurface. The science team was also provided with simulated images from the Mars Descent Imager and orbital panchromatic and multispectral imaging of the site obtained with the French SPOT, airborne Thermal Infrared Mapping Spectrometer, and Landsat Thematic Mapper instruments. Commands sequences were programmed and sent daily to the rover, and data returned were limited to 40 Mbits per communication cycle. During the simulated mission, 12 commands were uplinked to the rover, it traversed •90 m, six sites were analyzed, 11 samples were collected for laboratory analysis, and over 5 Gbits of data were collected. Twenty-two scientists, unfamiliar with the location of the field site, participated in the science mission from a variety of locations, accessing data via the World Wide Web. Remote science interpretations were compared with ground truth from the field and laboratory analysis of collected samples. Using this payload and mission approach, the science team synergistically interpreted orbital imaging and infrared spectroscopy, descent imaging, rover-based imaging, infrared spectroscopy, and microscopic imaging to deduce a consistent and largely correct interpretation of the geology, mineralogy, stratigraphy, and exobiology of the site. Use of imaging combined with infrared spectroscopy allowed source outcrops to be identified for local rocks on an alluvial fan. Different lithologies were distinguished both near the rover and at distances of hundreds of meters or more. Subtle differences such as a contact between dolomite and calcite were identified at a distance of 0.5 km. A biomarker for endolithic microbiota, a plausible life form to be found on Mars, was successfully identified. Microscopic imaging of soils extracted from the surface and subsurface allowed the mineralogy and ñuvial history of the trench site to be deduced. The scientific productivity of this simulation shows that this payload and mission approach has high science value and would contribute substantially to achieving the goals of Mars exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.