Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.
Although amyotrophic lateral sclerosis (ALS) is relatively rare, the socioeconomic significance of the disease is extensive. It is therefore vital to project the epidemiologic trend of ALS. To date, there have been few published studies attempting to estimate the number and distribution of ALS cases in the upcoming years. Here we show that the number of ALS cases across the globe will increase from 222,801 in 2015 to 376,674 in 2040, representing an increase of 69%. This increase is predominantly due to ageing of the population, particularly among developing nations. This projection is likely an underestimate due to improving healthcare and economic conditions. The results should be used to inform healthcare policy to more efficiently allocate healthcare resources.
Background Accurate diagnosis and early detection of complex disease has the potential to be of enormous benefit to clinical trialists, patients, and researchers alike. We sought to create a non-invasive, low-cost, and accurate classification model for diagnosing Parkinson’s disease risk to serve as a basis for future disease prediction studies in prospective longitudinal cohorts. Methods We developed a simple disease classifying model within 367 patients with Parkinson’s disease and phenotypically typical imaging data and 165 controls without neurological disease of the Parkinson’s Progression Marker Initiative (PPMI) study. Olfactory function, genetic risk, family history of PD, age and gender were algorithmically selected as significant contributors to our classifying model. This model was developed using the PPMI study then tested in 825 patients with Parkinson’s disease and 261 controls from five independent studies with varying recruitment strategies and designs including the Parkinson’s Disease Biomarkers Program (PDBP), Parkinson’s Associated Risk Study (PARS), 23andMe, Longitudinal and Biomarker Study in PD (LABS-PD), and Morris K. Udall Parkinson’s Disease Research Center of Excellence (Penn-Udall). Findings Our initial model correctly distinguished patients with Parkinson’s disease from controls at an area under the curve (AUC) of 0.923 (95% CI = 0.900 – 0.946) with high sensitivity (0.834, 95% CI = 0.711 – 0.883) and specificity (0.903, 95% CI = 0.824 – 0.946) in PPMI at its optimal AUC threshold (0.655). The model is also well-calibrated with all Hosmer-Lemeshow simulations suggesting that when parsed into random subgroups, the actual data mirrors that of the larger expected data, demonstrating that our model is robust and fits well. Likewise external validation shows excellent classification of PD with AUCs of 0.894 in PDBP, 0.998 in PARS, 0.955 in 23andMe, 0.929 in LABS-PD, and 0.939 in Penn-Udall. Additionally, when our model classifies SWEDD as PD, they convert within one year to typical PD more than would be expected by chance, with 4 out of 17 classified as PD converting to PD during brief follow-up; while SWEDD not classified as PD showed one conversion to PD out of 38 participants (test of proportions, p-value = 0.003). Interpretation This model may serve as a basis for future investigations into the classification, prediction and treatment of Parkinson’s disease, particularly those planning on attempting to identify prodromal or preclinical etiologically typical PD cases in prospective cohorts for efficient interventional and biomarker studies. Funding Please see the acknowledgements and funding section at the end of the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.