SynopsisWe consider a common abstraction of de Morgan algebras and Stone algebras which we call an MS-algebra. The variety of MS-algebras is easily described by adjoining only three simple equations to the axioms for a bounded distributive lattice. We first investigate the elementary properties of these algebras, then we characterise the least congruence which collapses all the elements of an ideal, and those ideals which are congruence kernels. We introduce a congruence which is similar to the Glivenko congruence in a p-algebra and show that the location of this congruence in the lattice of congruences is closely related to the subdirect irreducibility of the algebra. Finally, we give a complete description of the subdirectly irreducible MS-algebras.
SynopsisBy an inverse transversal of a regular semigroup S we mean an inverse subsemigroup that contains a single inverse of every element of S. A certain multiplicative property (which in the case of a band is equivalent to normality) is imposed on an inverse transversal and a complete description of the structure of S is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.