The Upper Dharmaram Formation (Lower Jurassic, Sinemurian) of India has yielded three sauropodomorph dinosaurs, two new taxa and an indeterminate one. Lamplughsaura dharmaramensis n. gen. and sp., represented by several partial skeletons, is a heavily built quadrupedal form (body length ~10 m). Autapomorphies include teeth with strongly emarginated distal edge; caudal cervical neural spines bearing a vertically oriented ligamentous furrow on cranial and caudal surfaces and a transversely expanded spine table; caudal neural spines bearing a craniodorsally directed spur (proximal caudal vertebrae) or a large process (midcaudal vertebrae); caudal neural spines shorter than transverse processes so former lost first in passing along tail; and a plesiomorphy that is the nontrenchant form of manual ungual I. The Indian dinosaurs were coded for two recent datamatrices for basal sauropodomorphs. The results of this preliminary analysis indicate that Lamplughsaura is either a basal Sauropoda or, less likely, based on Templeton's test, a stem sauropodomorph. The second large form, represented by the proximal half of a femur, is a sauropodomorph that is more derived than Saturnalia (Brazil) and Thecodontosaurus (Great Britain) from the Upper Triassic. This is also true for the smaller (body length ~4 m as adult) Pradhania gracilis n. gen. and sp. which lies outside of the Sauropoda + Plateosauria clade, so it is definitely a stem sauropodomorph. Pradhania is known from fragmentary material; an autapomorphy is the very prominent medial longitudinal ridge on the maxilla.
The beginning of dinosaur evolution is currently known based on a handful of highly informative Gondwanan outcrops of Ischigualastian age (late Carnian-early Norian). The richest Triassic dinosaur records of the southern continents are those of South America and South Africa, with taxonomically diverse faunas, whereas faunas from India and central Africa are more poorly known. Here, the known diversity of Gondwanan Triassic dinosaurs is increased with new specimens from central India, which allow a more comprehensive characterisation of these dinosaur assemblages. Five dinosauriform specimens are reported from the probable late Norian-earliest Rhaetian Upper Maleri Formation, including two new sauropodomorph species, the nonplateosaurian Nambalia roychowdhurii and the plateosaurian Jaklapallisaurus asymmetrica, a guaibasaurid and two basal dinosauriforms. The Lower Dharmaram Formation, probably latest Norian-Rhaetian in age, includes basal sauropodomorph and neotheropod remains, providing the second record of a Triassic Gondwanan neotheropod. The currently available evidence suggests that the oldest known Gondwanan dinosaur assemblages (Ischigualastian) were not homogeneous, but more diverse in South America than in India. In addition, the Upper Maleri and Lower Dharmaram dinosaur assemblages resemble purported coeval South American and European beds in the presence of basal sauropodomorphs. Accordingly, the current available evidence of the Triassic beds of the Pranhita-Godavari Basin suggests that dinosaurs increased in diversity and abundance during the late Norian to Rhaetian in this region of Gondwana.
The Gondwana Sequence in the northern part of the Pranhita-Godavari Valley consists of four formations of the Lower Gondwana and seven formations of the Upper Gondwana. The gross lithological characters and mappability are considered as the major criteria for delineating the formations. The name Kamthi Formation which has been used by different authors in different senses, is here used in the sense of Sengupta (1970). The rocks between the Barakar and this Kamthi are divided into four lithozones for limitations of mappability. Although some of these lithozones have earlier been designated as formations, at present not sufficient information is available to justify this. Only two breaks, both within the Upper Gondwana, are found to be present: there is no recognisable break between the Lower and the Upper Gondwana. A summary of this succession is presented in tabular form taking into account the words of earlier authors. The alternative views that are radically different from the one presented here are also discussed briefly. The usefulness of plant megafossils and fossil vertebrates in understanding the stratigraphy is discussed briefly and their role in determining the possible geological ages of some of the formations is mentioned. The vertebrate fauna from a number of formations is listed. At least seven formations are fossiliferous as far as vertebrates are concerned. Of these, two belonging to the Triassic and one belonging to the Jurassic are quite well-documented. The other four are less well known, but serve as very useful time markers. All these vertebrate-bearing formations can be correlated with co-eval rocks elsewhere in the world. The difficulty of correlating continental deposits is realized and keeping this in view a tentative correlation is presented.
The sauropod dinosaur from the Kota formation of India, Lower Jurassic in age, is the earliest which is known from adequate material. This preliminary account mentions the occurrence of the material, establishes a name and holotype, presents a diagnosis of its characters and comments on those which are typical of sauropods. Some of the characters which collectively distinguish the new genus and species, Barapasaurus tagorei , from other sauropods are briefly indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.