We report the discovery of an excess of main sequence turn-off stars in the direction of the constellations of Eridanus and Phoenix from the first year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l ∼ 285 • and b ∼ −60 • and spans at least 30 • in longitude and 10 • in latitude. The Poisson significance of the detection is at least 9σ. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is about d ∼ 16 kpc. The extent of EriPhe in projection is therefore at least ∼ 4 kpc by ∼ 3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by ∼ 120 • and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source colordependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We then compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such systematic chromatic errors for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.