CFD is a numerical approach used to solve fluid problems. In the CFD simulation process, the meshing stage is crucial to produce high accuracy. Meshing is a process where the geometric space of an object is broken down into many nodes to translate the physical components that occur while representing the object’s physical shape. The research objective was to analyze the characteristics of the mesh technique in the Finite Volume Method (FVM) using the RANS (Reynolds - Averaged Navier - Stokes) equation. The numerical simulation approach used three mesh techniques, namely overset mesh, morphing mesh, and moving mesh. The k-ε turbulent model and VOF (Volume of Fluid) were used to model the water and air phases. The mesh technique approach in CFD simulation showed a pattern under experimental testing. This research showed the difference in value to the experimental results, namely by using the moving mesh method, the difference in resistance difference was 8% at high-speed conditions, the difference in trim value at overset mesh was 11%, and the difference in heave value with the moving mesh method was 14% at low speed. The conclusion reported that overset mesh had better than other mesh methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.