This paper reports on the results of design and fabrication of a new finger support. Finger deformation is very common and has many causes and severity. Most of the available finger supports are not resizable and comfortable. They are mainly designed to fully restrict the finger’s motion when there has been any type of injury. However, for example in the case of early stages of arthritis, the patient should be able to use them whenever they want.
Furthermore, the available finger supports cannot be adjusted considering various fingers’ sizes and positions. In this research, seven models of a polymer-metal composite finger support are designed. They are made of a soft polymer with inserted sheets of aluminum, steel or carbon-fiber. The optimal models are strong, and allow for size and finger position adjustments, and can be used for patients who already have distorted fingers and are working on them to
regain some functions. Extensive finite element analysis of the support under the distributed loads of the finger, confirmed by the results obtained by a MATLAB program, shows that the new support tolerates the applied forces without any permanent deformation. Finally, the fabricated part using 3D printing validates the results.
Access to this document was granted through an Emerald subscription provided by emerald-srm:187202 []
For AuthorsIf you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.ABSTRACT-The electronics industry faces a serious challenge in its approach to the cleaning of printed circuit boards after reflow soldering. A unique approach has been adopted to give invariant viscosity, hot/wet slump resistance and low residue solder pastes. Carefully tailored activation systems provide effective reflow and benign no-clean residues. High metal loadings are incorporated with fine pitch capability and consistency of product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.