We perform an integrated analysis of magnetic anomalies, multichannel seismic and wide-angle seismic data across an Early Cretaceous continental large igneous province in the northern Barents Sea region. Our data show that the high-frequency and high-amplitude magnetic anomalies in this region are spatially correlated with dykes and sills observed onshore. The dykes are grouped into two conjugate swarms striking oblique to the northern Barents Sea passive margin in the regions of eastern Svalbard and Franz Josef Land, respectively. The multichannel seismic data east of Svalbard and south of Franz Josef Land indicate the presence of sills at different stratigraphic levels. The most abundant population of sills is observed in the Triassic successions of the East Barents Sea Basin. We observe near-vertical seismic column-like anomalies that cut across the entire sedimentary cover. We interpret these structures as magmatic feeder channels or dykes. In addition, the compressional seismic velocity model locally indicates near-vertical, positive fingershaped velocity anomalies (10-15 km wide) that extend to mid-crustal depths (15-20 km) and possibly deeper. The crustal structure does not include magmatic underplating and shows no regional crustal thinning, suggesting a localized (dyking, channelized flow) rather than a pervasive mode of magma emplacement. We suggest that most of the crustal extension was taken up by brittle-plastic dilatation in shear bands. We interpret the geometry of dykes in the horizontal plane in terms of the palaeo-stress regime using a model of a thick elastoplastic plate containing a circular hole (at the plume location) and subject to combined pure shear and pressure loads. The geometry of dykes in the northern Barents Sea and Arctic Canada can be predicted by the pattern of dilatant plastic shear bands obtained in our numerical experiments assuming boundary conditions consistent with a combination of extension in the Amerasia Basin sub-parallel to the northern Barents Sea margin and a mild compression nearly orthogonal to the margin. The approach has implications for palaeo-stress analysis using the geometry of dyke swarms. Supplementary material: Details on traveltime tomography model: Resolution tests, traveltime information and ray coverage are available at
The 1370 km long 4-AR reference profile crosses the North Barents Basin, the northern end of the Novaya Zemlya Rise, and the North Kara Basin. Integrated geophysical studies including common deep point (CDP) survey and deep seismic sounding (DSS) were carried out along the profiles. The DSS was performed using autonomous bottom seismic stations (ABSS) spaced 10-20 km apart and a powerful air gun producing seismic signals with a step size of 250 m. As a result, detailed P-and S-wave velocity structures of the crust and upper mantle were studied. The basic method was ray-tracing modeling. The Earth's crust along the entire profile is typically continental with compressional wave velocities of 5.8-7.2 km/s in the consolidated part. Crustal thickness increases from 30 km near the islands of Franz Josef Land to 35 km beneath the North Barents Basin, 50 km beneath the Novaya Zemlya Rise, and 40 km beneath the North Kara Basin. The North Barents Basin 15 km deep is characterized by unusually low velocities in the consolidated crust: The upper crust layer with velocities of 5.8-6.4 km/s has a thickness of about 15 km beneath the basin (usually, this layer wedges beneath deep sedimentary basins). Another special property of the crust in the North Barents Basin is the destroyed structure of the Moho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.