We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F 0 . Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure.
Despite almost 25 years of effort, the development of a highly differentiated and functionally equivalent cell culture model of uroepithelial cells has eluded investigators. We have developed a primary cell culture model of rabbit uroepithelium that consists of an underlying cell layer that interacts with a collagen substratum, an intermediate cell layer, and an upper cell layer of large (25-100 m) superficial cells. When examined at the ultrastructural level, the superficial cells formed junctional complexes and had an asymmetric unit membrane, a hallmark of terminal differentiation in bladder umbrella cells. These cultured "umbrella" cells expressed uroplakins and a 27-kDa uroepithelial specific antigen that assembled into detergent-resistant asymmetric unit membrane particles. The cultures had low diffusive permeabilities for water (2.8 ؋ 10 ؊4 cm/s) and urea (3.0 ؋ 10 ؊7 cm/s) and high transepithelial resistance (>8000 ⍀ cm 2 ) was achieved when 1 mM CaCl 2 was included in the culture medium. The cell cultures expressed an amiloride-sensitive sodium transport pathway and increases in apical membrane capacitance were observed when the cultures were osmotically stretched. The described primary rabbit cell culture model mimics many of the characteristics of uroepithelium found in vivo and should serve as a useful tool to explore normal uroepithelial function as well as dysfunction as a result of disease.
A panel of murine monoclonal antibodies was generated against the extracellular domain of the human platelet-derived growth factor (PDGF)  receptor (PDGFR). These antibodies were assayed for both the ability to inhibit binding of PDGF BB to PDGFR ؉ cells as well as the capacity to inhibit PDGF BB-mediated mitogenesis. As expected, all antibodies that could prevent PDGF BB binding also inhibited mitogenesis. However one antibody (M4TS.11), with no detectable ability to inhibit PDGF BB binding, was a potent inhibitor of proliferation induced by PDGF BB. Further characterization indicated that M4TS.11 impaired PDGFR dimerization, revealing the mechanism by which it prevented PDGF BB-mediated mitogenesis. Using domain deletion mutants of the extracellular portion of PDGFR, the determinant recognized by this antibody was localized to the fourth extracellular domain of PDGFR, indicating that this domain, which is not involved in ligand binding, actively participates in receptor dimerization and signal transduction. The M4TS.11 antibody could also inhibit PDGF BB-mediated proliferation of responsive cells from both the baboon and the rabbit, indicating the determinant recognized by the antibody is not limited to humans and making it possible to use this antibody to evaluate the therapeutic benefit of interfering with PDGF in animal models of human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.