Fe–Cr–C hardfaced coatings are applied over components used in mining, earth moving, ash and coal handling systems. The performance of these coatings depend on microstructural phases present in the deposit post-solidification and/or heat treatment. To prevent the failure of a coating, understanding the mechanical behaviour of the existing phases is one of the key areas of focus. In the current investigation, the study was limited to understand the influence of heat treatment process on nano-scale hardness and reduced modulus properties of phases of Fe–13%Cr–1%C hardfaced alloy coating by accelerated property mapping (XPM) technique. Colour variation in the property maps showed the relative deformation nature of the material. The hardness and reduced modulus values for carbide phases were found to be higher in all conditions. From Weibull statistical analysis, the Weibull modulus values reduced drastically for the carbide phase after heat treatment, revealing higher variability of mechanical properties. The above trends were observed mainly due to %C and %Cr difference across phases and carbide phase morphology transformation happened due to heat treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.