We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogenflow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H 2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H 2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H 2 versus H 2 seeded in He), and the optical properties of the window used (MgF 2 versus CaF 2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H 2 molecular emission ranges.
Context. The vacuum-UV (VUV) absorption cross sections of most molecular solids present in interstellar ice mantles with the exception of H 2 O, NH 3 , and CO 2 have not been reported yet. Models of ice photoprocessing depend on the VUV absorption cross section of the ice to estimate the penetration depth and radiation dose, and in the past, gas phase cross section values were used as an approximation. Aims. We aim to estimate the VUV absorption cross section of molecular ice components. Methods. Pure ices composed of CO, H 2 O, CH 3 OH, NH 3 , or H 2 S were deposited at 8 K. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120−160 nm (10.33−7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results. We provide VUV absorption cross sections of the reported molecular ices. Our results agree with those previously reported for H 2 O and NH 3 ices. Vacuum-UV absorption cross section of CH 3 OH, CO, and H 2 S in solid phase are reported for the first time. H 2 S presents the highest absorption in the 120−160 nm range. Conclusions. Our method allows fast and readily available VUV spectroscopy of ices without the need to use a synchrotron beamline. We found that the ice absorption cross sections can be very different from the gas-phase values, and therefore, our data will significantly improve models that simulate the VUV photoprocessing and photodesorption of ice mantles. Photodesorption rates of pure ices, expressed in molecules per absorbed photon, can be derived from our data.
Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH 2 OH, H 2 CO, CH 4 , HCOOH, HCOCH 2 OH, CH 3 COOH, CH 3 OCH 3 , HCOOCH 3 , and (CH 2 OH) 2 , as well as HCO, CO, and CO 2 . The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH 3 OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.
Context. Carbamic acid (NH 2 COOH) is the smallest amino acid, smaller than the smallest proteinaceous amino acid glycine. This compound has never been observed in the interstellar medium (ISM). Previous experiments where ice mixtures containing H 2 O, CO 2 and NH 3 were subjected to 1-MeV proton bombardment showed that carbamic acid is formed in a stable zwitterionic (NHAims. In the present work, we have carried out irradiations of ice mixtures containing H 2 O, 12 CO 2 / 13 CO 2 and NH 3 with ultraviolet (UV)/extreme ultraviolet (EUV) photons provided by a synchrotron source in the 4-20 eV range, and compared the results with those obtained for energetic protons. Methods. Infrared (IR) spectroscopy and mass spectrometry were used to identify the formed photo-products and monitor their evolution in the ices at 15 K and during the warming up to room temperature in the formed residues. Results. We identified the IR absorption features of HNCO, OCN − , CO, NH + 4 and NH 2 CHO at low temperature in the ices, and features assigned to carbamic acid in the residues around 250 K. Finally, we conclude that under our experimental conditions, unlike what was obtained after bombardment with energetic protons, carbamic acid may be formed in the neutral form, and propose some photochemical pathways leading to its formation.
Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H 2 S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H 2 S and CO 2 :H 2 S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS 2 , OCS, SO 2 , etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H 2 S ice mixtures is higher than that of CO 2 :H 2 S ice mixtures; (2) a lower concentration of H 2 S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS 2 differ significantly upon VUV and EUV irradiations. Furthermore, CS 2 was produced only after VUV photoprocessing of CO:H 2 S ices, while the VUV-induced production of SO 2 occurred only in CO 2 :H 2 S ice mixtures. More generally, the production yields of OCS, H 2 S 2 , and CS 2 were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H 2 S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.