Context. Carbamic acid (NH 2 COOH) is the smallest amino acid, smaller than the smallest proteinaceous amino acid glycine. This compound has never been observed in the interstellar medium (ISM). Previous experiments where ice mixtures containing H 2 O, CO 2 and NH 3 were subjected to 1-MeV proton bombardment showed that carbamic acid is formed in a stable zwitterionic (NHAims. In the present work, we have carried out irradiations of ice mixtures containing H 2 O, 12 CO 2 / 13 CO 2 and NH 3 with ultraviolet (UV)/extreme ultraviolet (EUV) photons provided by a synchrotron source in the 4-20 eV range, and compared the results with those obtained for energetic protons. Methods. Infrared (IR) spectroscopy and mass spectrometry were used to identify the formed photo-products and monitor their evolution in the ices at 15 K and during the warming up to room temperature in the formed residues. Results. We identified the IR absorption features of HNCO, OCN − , CO, NH + 4 and NH 2 CHO at low temperature in the ices, and features assigned to carbamic acid in the residues around 250 K. Finally, we conclude that under our experimental conditions, unlike what was obtained after bombardment with energetic protons, carbamic acid may be formed in the neutral form, and propose some photochemical pathways leading to its formation.
Pure CO ice has been irradiated with electrons of energy in the range 150 − 1000 eV with the Interstellar Energetic-Process System (IEPS). The main products of irradiation are carbon chains C n (n = 3, 5, 6, 8, 9, 10, 11, 12), suboxides, C n O (n = 2, 3, 4, 5, 6, 7), and C n O 2 (n = 1, 3, 4, 5, 7) species. CO 2 is by far the most abundant reaction product in all the experiments. The destruction cross-section of CO peaks at about 250 eV, decreases with the energy of the electrons and is more than one order of magnitude higher than for gas-phase CO ionization. The production cross-section of carbon dioxide has been also derived and is characterized by the competition between chemistry and desorption.Desorption of CO and of new species during the radiolysis follows the electron distribution in the ice. Low energy electrons having short penetration depths induce significant desorption. Finally, as the ice thickness approaches the electron penetration depth the abundance of the products starts to saturate. Implications on the atmospheric photochemistry of cold planets hosting surface CO ices are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.