Shallow water bathymetry is important for nautical navigation to avoid stranding, as well as for the scientific simulation of high tide and high waves in coastal areas. Although many studies have been conducted on satellite derived bathymetry (SDB), previously used methods basically require supervised data for analysis, and cannot be used to analyze areas that are unreachable by boat or airplane. In this study, a mapping method for shallow water bathymetry was developed, using random forest machine learning and multi-temporal satellite images to create a generalized depth estimation model. A total of 135 Landsat-8 images, and a large amount of training bathymetry data for five areas were analyzed with the Google Earth Engine. The accuracy of SDB was evaluated by comparison with reference bathymetry data. The root mean square error in the final estimated water depth in the five test areas was 1.41 m for depths of 0 to 20 m. The SDB creation system developed in this study is expected to be applicable in various shallow water regions under highly transparent conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.