Environmental context Non-methane hydrocarbons play an important role in the formation of photochemical oxidants such as ozone. We investigate factors controlling the distribution of non-methane hydrocarbons in an urban area of the Middle East. The study highlights the importance of local emissions and atmospheric dynamics, and the limited effect of photochemistry at the measurement site. Abstract Measurements of over 70 C2-C16 non-methane hydrocarbons (NMHCs) were conducted in suburban Beirut (1.3 million inhabitants) in summer 2011 and winter 2012 during the Emission and Chemistry of Organic Carbon in the East Mediterranean (ECOCEM) field campaign. The levels of NMHCs observed exceeded by a factor of two in total volume the levels found in northern mid-latitude megacities (Paris and Los Angeles), especially for the unburned fossil fuel fraction. Regardless of the season, the major compounds, explaining 50% of the concentrations, were toluene, isopentane, butane, m,p-xylenes, propane and ethylene, emitted by mobile traffic and gasoline evaporation sources. Most NMHCs show a distinct seasonal cycle, with a summer maximum and a winter minimum, unlike seasonal cycles usually observed in the northern mid-latitude urban areas. We show that NMHC distribution is mainly driven by strong local emissions and local atmospheric dynamics, with no clear evidence of photochemical removal in summer or influence from long-range transport.
Abstract. We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012) at a suburban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons) sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation) in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer). The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20-39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity) underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds) anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.