Fault detection and classification is based on the idea that can detect changing conditions within equipment. The techniques for detecting faults can be distinguished as a pattern matching from the values of a sensor and the difference between the sensor readings and expected value. Researchers also interested in the field of fault detection of rotating machinery using artificial neural networks (ANNs). But, ANN suffer from data diversity and training complexity. In this paper, an approach is presented to prevent the complexities of ANN. The proposed system uses the inertia weight firefly (IWF) algorithm for training the neural network. The efficiency of the Hybrid ANN IWF (HAIWF) in detecting and classifying machine faults is compared with conventional techniques. The proposed techniques achieved 11-14% more than the conventional techniques. Ultimately the proposed IWF based ANN is suggested to effectively predict the industrial machine fault detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.