We propose a novel framework, called Virtual Processing Components (VPC), that permits the modeling and simulation of multiple processors running arbitrary scheduling strategies in SystemC. The granularity is given by task accuracy that guarantees a small simulation overhead.
Since initiating the information technology industry-wide transition from bipolar to CMOS technology with the first generation of S/390@ processors in 1994, IBM reached another major milestone with the introduction of the third generation in September 1996. The balanced system and cache structure and the modularity of the components of Generation 3 support a wide performance range from a uniprocessor to a high-performance multiprocessing system. Because of this modularity, Generation 4 is also based on this structure.
The performance of large servers is to a high degree determined by their I/O subsystems. In the z990 server, nearly all of the components in the I/O path have been considerably improved in performance, capability, and cost. A 2-GB/s enhanced self-timed interface (eSTI) was introduced which is capable of absorbing the ever-increasing data rates of modern high-speed adapters. The I/O bandwidth available from a single node (three memory bus adapter, or MBA, chips, each with four eSTI ports) now equals 48 GB/s. As a consequence, both the MBA chip and the STI multiplexer switch (STI switch) chip had to be completely redesigned. In addition to these two chips, this paper describes the eSTI design itself and the Sweep chip, which integrates the function of four bidirectional adapter chips, one switch chip, and a clock chip.
Formal verification (FV) is considered by manyto be complicated and to require considerable mathematical knowledge for successful application. We have developed a methodology in which we have added formal verification to the verification process without requiring any knowledge of formal verification languages. We use only finite-state machine notation, which is familiar and intuitive to designers. Another problem associated with formal verification is state-space explosion. If that occurs, no result is returned; our method switches to random simulation after one hour without results, and no effort is lost. We have compared FV against random simulation with respect to development time, and our results indicate that FV is at least as fast as random simulation. FV is superior in terms of verification quality, however, because it is exhaustive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.