Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter Ͻ10 m (PM 10 ) and Ͻ2.5 m were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM 10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM 10 42 m downwind of a demolition site increased 4-to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM 10 , the presence of dusty conditions was associated with a 74% increase in PM 10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM 10 (30-sec averaging time) occasionally exceeded 500 g/m 3 . The median particle size downwind of a demolition site (17.3 m) was significantly larger than background (3 m). Specific activities are associated with realtime particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.
For the analysis of trace organic pollutants in environmental samples using a gas chromatographic (GC) instrument, large-volume injection using the programmable temperature vaporization (PTV) technique has many advantages over the traditional split/splitless injection. By increasing the injection volume from 1 or 2 microL with a split/splitless inlet to 60 microL or higher with the PTV inlet, analytical sensitivity is greatly enhanced for analytes with low concentrations. Results obtained from optimization of instrument operational parameters for analyzing polycyclic aromatic hydrocarbons (PAHs) are reported in this paper. The laboratory method detection limits for 16 PAHs and six deuterated PAH surrogates were determined using seven replicate spike samples. The initial temperature of the inlet was found to be critical in determining the analytical sensitivity of PAHs with two or three rings due to loss of these relatively highly volatile compounds during solvent vaporization. For most PAHs, the response of the mass spectrometry detector increased proportionally as the total injected volume was increased up to 150 microL. Significant interference from rubber material of the sample vial septa was observed.
The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO 2 ) and ozone (O 3 ) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO 2 and O 3 exposure were less variable. Welding fume metal exposures were significantly higher 474 μ g/m 3 for welders than non-welders 60 μ g/m 3 (p=0.001). Welders were exposed to higher concentrations of NO 2 and O 3 than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.