Abstract-El'gygytgyn in northeast Chukotka (Russia) is a 3.6 Ma, 18-km-diameter impact structure. The impact crater was recently drilled in the framework of a project sponsored by the International Continental Scientific Drilling Program (ICDP). Target rocks at the El'gygytgyn area are dominated by the felsic members of the Late Cretaceous OkhotskChukotka Volcanic Belt (OCVB). Such a target lithology is unique among terrestrial impact craters, thereby providing the opportunity to study shock metamorphism in siliceous volcanic rocks. Here, we present a petrographic, geochemical, and isotopic study of the section of the drill core underneath the lacustrine sediments, extending from $316 m to 517 m below the lake bottom (blb). The drill core stratigraphy includes $80 m of suevite and a cross section through a volcanic suite, which consists of (1) a middle section ( $390-423 mblb) with dominant felsic tuffs and a few mafic members, and (2) a welded rhyoliticdacitic ignimbrite ( $423-517 mblb). The melt fragments embedded in the suevite are interpreted as being impact-related by comparison with impact glasses from the crater and in opposition to the target rock, which does not include similar melts. A suevitic dyke crosscuts the lower section of the core at the depth 471.40 mblb. Evidence for shock metamorphism is concentrated in the upper 10 m of the drill core and almost limited to the suevitic breccia. The geochemical and isotope (Nd and Hf) composition of samples from the target and the drill core reveals relationships to the "Berlozhya magmatic assemblage" (BMA) arguing for similar source magmas. The primitive upper mantle (PUM)-normalized trace element plot of rocks investigated here confirms a subduction-related signature, as previously proposed for rocks from both OCVB and BMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.