Electrochemical machining (ECM) is a non-traditional process used mainly to cut hard or difficult to cut metals, where the application of a more traditional process is not convenient. Those difficult to cut metals demand high energy to form chips, which can result in thermal effects due to the high temperatures inherent to the process in the chip–tool interface. In traditional processes, the heat generated during the cut is dissipated to the tool, chip, workpiece and environment, affecting the surface integrity of the workpiece, mainly for those hard materials. In this work, experimental investigations have been made on the various influencing parameters involved in the Metal removal rate (MRR) and Surface roughness using ECM on AISI 202 steel. The major intervening parameters are studied and the relationship between the parameters has been determined to achieve maximum metal removal rate and minimum surface roughness by using NaNO 3-Aqua solution.
Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.