The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics near such phase transitions. We show that near second-order quantum phase transitions, subtle quantum interference effects can invalidate this paradigm, and we present a theory of quantum critical points in a variety of experimentally relevant two-dimensional antiferromagnets. The critical points separate phases characterized by conventional “confining” order parameters. Nevertheless, the critical theory contains an emergent gauge field and “deconfined” degrees of freedom associated with fractionalization of the order parameters. We propose that this paradigm for quantum criticality may be the key to resolving a number of experimental puzzles in correlated electron systems and offer a new perspective on the properties of complex materials.
We present the critical theory of a number of zero temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions. The most important example is the transition of the S = 1/2 square lattice antiferromagnet between the Neel state (which breaks spin rotation invariance) and the paramagnetic valence bond solid (which preserves spin rotation invariance but breaks lattice symmetries). We show that these two states are separated by a second order quantum phase transition. The critical theory is not expressed in terms of the order parameters characterizing either state (as would be the case in Landau-Ginzburg-Wilson theory) but involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely related theory describes the superfluid-insulator transition of bosons at half-filling on a square lattice, in which the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of antiferromagnets between the valence bond solid and the Z_2 spin liquid: the critical theory has deconfined excitations interacting with an emergent U(1) gauge force. We comment on the broader implications of our results for the study of quantum criticality in correlated electron systems.Comment: 35 pages, 6 figure
We discuss physical properties of 'integer' topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order and are bosonic analogs of free fermion topological insulators and superconductors. While a formal cohomology based classification of such states was recently discovered, their physical properties remain mysterious. Here we develop a field theoretic description of several of these states and show that they possess unusual surface states, which if gapped, must either break the underlying symmetry, or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two dimensional theory. While this is the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by quantized magnetoelectric response θ, which, somewhat surprisingly, is an odd multiple of 2π. Two different surface theories are shown to capture these phenomenathe first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. A bulk field theory consistent with these properties is identified, which is a multicomponent BF theory supplemented, crucially, with a topological term. Bulk sigma model field theories of these phases are also provided. A possible topological phase characterized by the thermal analog of the magnetoelectric effect is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.