Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto-and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond=1 as=10 −18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼ 152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.
We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.
We perform a detailed analysis of high-order harmonic generation (HHG) in atoms within the strong field approximation (SFA) by considering spatially inhomogeneous monochromatic laser fields. We investigate how the individual pairs of quantum orbits contribute to the harmonic spectra. We show that in the case of inhomogeneous fields, the electron tunnels with two different canonical momenta. One of these momenta leads to a higher cutoff and the other one develops a lower cutoff. Furthermore, we demonstrate that the quantum orbits have a very different behavior in comparison to the homogeneous field. We also conclude that in the case of the inhomogeneous fields, both odd and even harmonics are present in the HHG spectra. Within our model, we show that the HHG cutoff extends far beyond the standard semiclassical cutoff in spatially homogeneous fields. Our findings are in good agreement both with quantum mechanical and classical models.
We perform a detailed analysis of the recollision-excitation-tunneling (RESI) mechanism in laserinduced nonsequential double ionization (NSDI), in which the first electron, upon return, promotes a second electron to an excited state, from which it subsequently tunnels, based on the strong-field approximation. We show that the shapes of the electron momentum distributions carry information about the bound-state with which the first electron collides, the bound state to which the second electron is excited, and the type of electron-electron interaction. Furthermore, one may define a driving-field intensity threshold for the RESI physical mechanism. At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the second electron. We compute the distributions for helium and argon in the threshold and above-threshold intensity regime. In the latter case, we relate our findings to existing experiments. The electron-momentum distributions encountered are symmetric with respect to all quadrants of the plane spanned by the momentum components parallel to the laser-field polarization, instead of concentrating on only the second and fourth quadrants.
We present theoretical investigations of high-order harmonic generation (HHG) resulting from the interaction of noble gases with localized surface plasmons. These plasmonic fields are produced when a metal nanoparticle is subject to a few-cycle laser pulse. The enhanced field, which largely depends on the geometrical shape of the metallic structure, has a strong spatial dependency. We demonstrate that the strong non-homogeneity of this laser field plays an important role in the HHG process and leads to a significant increase of the harmonic cut-off energy. In order to understand and characterize this new feature, we include the functional form of the laser electric field obtained from recent attosecond streaking experiments [F. Süßmann and M. F. Kling, Proc. of SPIE, Vol. 8096, 80961C (2011)] in the time dependent Schrödinger equation (TDSE). By performing classical simulations of the HHG process we show consistency between them and the quantum mechanical predictions. These allow us to understand the origin of the extended harmonic spectra as a selection of particular trajectory sets. The use of metal nanoparticles shall pave a completely new way of generating coherent XUV light with a laser field which characteristics can be synthesized locally. When matter, i.e. atoms or molecules, is exposed to short and intense laser radiation, non-linear phenomena are triggered as a consequence of this interaction. Amongst these phenomena, high-order harmonics generation (HHG) process [1, 2] has attracted considerable interests, since it is one of the most reliable pathways to generate coherent light from the ultraviolet (UV) to extreme ultraviolet (XUV) spectral range. As a result, HHG has proven to be a robust source for the generation of a PHz attosecond pulses train [3], that can be temporally confined to a single XUV attosecond pulse, now with kHz repetition rates [4]. Thanks to its remarkable properties, HHG can be used as well to extract temporal and spatial information with both attosecond and subAngström resolution on the generating system [5]. Hence, HHG represents a considerable tool to enable scrutinizing the atomic world with its natural temporal and spatial scales [6][7][8][9][10][11].The intuitive physical mechanism behind HHG, for a single atom or molecule (referred to as 'single emitter'), has been well established in the so-called three steps or simple man's model [12][13][14]: in the first step, an electronic wave packet is released the continuum by tunnel ionization through the potential barrier as a consequence of the non-perturbative interaction of the single emitter with the laser field. In the second step, the emitted electronic wave packet propagates away from its ionic core in the continuum to be finally driven back when the laser electric field changes its sign. In the final step, upon its return, the electronic wave packet may recombine with the core and the system relaxes the excess kinetic energy acquired by radiating a high-harmonic photon.In order to experimentally control the high harmonic ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.