In the digital area, Internet of Things (IoT) and connected objects generate a huge quantity of data traffic which feeds big data analytic models to discover hidden patterns and detect abnormal traffic. Though IoT networks are popular and widely employed in real world applications, security in IoT networks remains a challenging problem. Conventional intrusion detection systems (IDS) cannot be employed in IoT networks owing to the limitations in resources and complexity. Therefore, this paper concentrates on the design of intelligent metaheuristic optimization based feature selection with deep learning (IMFSDL) based classification model, called IMFSDL-IDS for IoT networks. The proposed IMFSDL-IDS model involves data collection as the primary process utilizing the IoT devices and is preprocessed in two stages: data transformation and data normalization. To manage big data, Hadoop ecosystem is employed. Besides, the IMFSDL-IDS model includes a hill climbing with moth flame optimization (HCMFO) for feature subset selection to reduce the complexity and increase the overall detection efficiency. Moreover, the beetle antenna search (BAS) with variational autoencoder (VAE), called BAS-VAE technique is applied for the detection of intrusions in the feature reduced data. The BAS algorithm is integrated into the VAE to properly tune the parameters involved in it and thereby raises the classification performance. To validate the intrusion detection performance of the IMFSDL-IDS system, a set of experimentations were carried out on the standard IDS dataset and the results are investigated under distinct aspects. The resultant experimental values pointed out the betterment of the IMFSDL-IDS model over the compared models with the maximum accuracy 95.25% and 97.39% on the applied NSL-KDD and UNSW-NB15 dataset correspondingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.