This work focused on the assessment of plant virus occurrence among primitive and higher plants in the Antarctic region. Sampling occurred during two seasons (2004/5 and 2005/6) at the Ukrainian Antarctic Station 'Academician Vernadskiy' positioned on Argentina Islands. Collected plant samples of four moss genera (Polytrichum, Plagiatecium, Sanionia and Barbilophozia) and one higher monocot plant species, Deschampsia antarctica, were further subjected to enzyme-linked immunosorbent assay to test for the presence of common plant viruses. Surprisingly, samples of Barbilophozia and Polytrichum mosses were found to contain antigens of viruses from the genus Tobamovirus, Tobacco mosaic virus and Cucumber green mottle mosaic virus, which normally parasitize angiosperms. By contrast, samples of the monocot Deschampsia antarctica were positive for viruses typically infecting dicots: Cucumber green mottle mosaic virus, Cucumber mosaic virus and Tomato spotted wilt virus. Serological data for Deschampsia antarctica were supported in part by transmission electron microscopy observations and bioassay results. The results demonstrate comparatively high diversity of plant viruses detected in Antarctica; the results also raise questions of virus specificity and host susceptibility, as the detected viruses normally infect dicotyledonous plants. However, the means of plant virus emergence in the region remain elusive and are discussed.
Although wheat streak mosaic virus (WSMV) is a well-known pathogen inducing significant crop losses and endangering wheat production worldwide, the recent discovery of High Plains wheat mosaic virus (HPWMoV) in Ukraine raises questions on the co-existence of these two viruses having a similar host range and the same mite vector. Here we report on the screening of winter wheat industrial plantings in several important regions of Ukraine for WSMV and HPWMoV. WSMV was identified in an extremely high number of symptomatic plants (>85%) as compared to HPWMoV detected in 40% of wheat samples. Importantly, the preferred mode of HPWMoV circulation in Ukraine was mixed infection with WSMV (>30%) as opposed to WSMV, which was typically found in monoinfection (60%). Screening wheat varieties for possible virus resistance indicated that all but one were susceptible to WSMV, whereas over 50% of the same varieties were not naturally infected with HPWMoV. Overall, phylogenetic analysis of the collected WSMV and HPWMoV isolates indicated their high identity and similarity to other known isolates of the respective viruses. Here we first characterize WSMV isolates found in winter wheat plants in mono- or mixed infection with HPWMoV, which was recently reported as a typical wheat pathogen in Ukraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.