There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.
A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).
In iron-pnictide superconductivity, the interband interaction between the hole and electron Fermi surfaces (FSs) is believed to play an important role. However, KFe(2)As(2) has three zone-centered hole FSs and no electron FS but still exhibits superconductivity. Our ultrahigh-resolution laser angle-resolved photoemission spectroscopy unveils that KFe(2)As(2) is a nodal s-wave superconductor with highly unusual FS-selective multi-gap structure: a nodeless gap on the inner FS, an unconventional gap with "octet-line nodes" on the middle FS, and an almost-zero gap on the outer FS. This gap structure may arise from the frustration between competing pairing interactions on the hole FSs causing the eightfold sign reversal. Our results suggest that the A(1g) superconducting symmetry is universal in iron-pnictides, in spite of the variety of gap functions.
We study superconducting FeSe (T c = 9 K) exhibiting the tetragonal-orthorhombic structural transition (T s ~ 90 K) without any antiferromagnetic ordering, by utilizing angle-resolved photoemission spectroscopy. In the detwinned orthorhombic state, the energy position of the d yz orbital band at the Brillouin zone corner is 50 meV higher than that of d xz , indicating the orbital order similar to NaFeAs and BaFe 2 As 2 families. Evidence of orbital order also appears in the hole bands at the Brillouin zone center. Precisely measured temperature dependence using strain-free samples shows that the onset of the orbital ordering (T o ) occurs very close to T s , thus suggesting that the electronic nematicity above T s is considerably weaker in FeSe compared to BaFe 2 As 2 family.
We investigate the electronic reconstruction across the tetragonal-orthorhombic structural transition in FeSe by employing polarization-dependent angle-resolved photoemission spectroscopy (ARPES) on detwinned single crystals. Across the structural transition, the electronic structures around the and M points are modified from four-fold to two-fold symmetry due to the lifting of degeneracy in d xz /d yz orbitals.The d xz band shifts upward at the point while it moves downward at the M point, suggesting that the electronic structure of orthorhombic FeSe is characterized by a momentum-dependent sign-changing orbital polarization. The elongated directions of the elliptical Fermi surfaces (FSs) at the and M points are rotated by 90 degrees with respect to each other, which may be related to the absence of the antiferromagnetic order in FeSe. Keywords: PACS:Most of the parent compounds of the iron-based superconductors show the tetragonal-orthorhombic structural transition at T s and the stripe-type antiferromagnetic (AFM) order below T N ( T s ) [1,2]. Near the structural transition, an orbital order defined by the inequivalent electron occupation of 3d xz (xz) and 3d yz (yz) orbitals [3][4][5], has been reported by ARPES [6,7] and X-ray linear dichroism measurements [8] in several parent compounds. Experimental and theoretical studies suggested that the structural transition is caused by the electronic nematicity of the spin [9,10] or orbital [11][12][13] degrees of freedoms. Since superconductivity develops when such complex ordered states are suppressed, it is crucial to understand how the phase transitions couple to each other.In Ba(Fe,Co) 2 As 2 , the spin-driven nematicity has been suggested from the phase diagram in which T s and T N closely follow each other as the carrier is doped [14]. The scaling behavior between the nematic fluctuation and spin fluctuation was also reported by the nuclear magnetic resonance (NMR) and shear modulus measurements [10]. On the other hand, in NaFeAs, the orbital-driven nematicity has been proposed by ARPES [11]. In this compound, the structural transition at T s = 54 K is well separated from the AFM transition at T N = 43 K. Inequivalent shift in the xz/yz orbital bands appearing above T s changes the FSs from four-fold to two-fold symmetric shape [11,15], which may be a possible trigger of the stripe type AFM order and the orthorhombicity [11,16]. The variety of iron-based
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.