A construct encoding a single chain variable fragment of the anti-P-glycoprotein monoclonal antibody C219 was made by combining the coding sequences for the heavy and light chain variable domains with a sequence encoding the flexible linker (GGGGS) 3 , an OmpA signal sequence, a c-myc identification tag, and a five-histidine purification tag. The construct was expressed in Escherichia coli and purified from the periplasmic fraction using a nickel chelate column and ion exchange chromatography. Three-step Western blot analysis showed that the construct retains binding affinity for P-glycoprotein. Crystals of 1.0 ؋ 0.2 ؋ 0.2 mm were grown in 100 mM citrate, pH 4.5, 21% polyethylene glycol 6000 in the presence of low concentrations of subtilisin, resulting in proteolytic removal of the linker and purification tags. The structure was solved to a resolution of 2.4 Å with an R factor of 20.6, an R free of 28.5, and good stereochemistry. This result could lead to a clinically useful product based on antibody C219 for the diagnosis of P-glycoprotein-mediated multidrug resistance. The molecule will also be useful in biophysical studies of functional domains of P-glycoprotein, as well as studies of the intact molecule.
In this paper we show the organisation of the Drosophila gene encoding a Golgi alpha-mannosidase II. We demonstrate that it encodes a functional homologue of the mouse Golgi alpha-mannosidase II. The Drosophila and mouse cDNA sequences translate into amino acid sequences which show 41% identity and 61% similarity. Expression of the Drosophila GMII sequence in CHOP cells produces an enzyme which has mannosidase activity and is inhibited by swainsonine and by CuSO(4.) In cultured Drosophila cells and in Drosophila embryos, antibodies raised against a C-terminal peptide localise this product mainly to the Golgi apparatus as identified by cryo-immuno electron microscopy studies and by antibodies raised against known mammalian Golgi proteins. We discuss these results in terms of the possible use of dGMII as a Drosophila Golgi marker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.