We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1 < z < 4.5 and is flux-limited to i PSF < 21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
Aims. The goal of this work is to better understand the correlations between the rest-frame UV/optical variability amplitude of quasistellar objects (QSOs) and physical quantities such as redshift, luminosity, black hole mass, and Eddington ratio. Previous analyses of the same type found evidence for correlations between the variability amplitude and these active galactic nucleus (AGN) parameters. However, most of the relations exhibit considerable scatter, and the trends obtained by various authors are often contradictory. Moreover, the shape of the optical power spectral density (PSD) is currently available for only a handful of objects. Methods. We searched for scaling relations between the fundamental AGN parameters and rest-frame UV/optical variability properties for a sample of ∼90 X-ray selected AGNs covering a wide redshift range from the XMM-COSMOS survey, with optical light curves in four bands (g P1 , r P1 , i P1 , z P1 ) provided by the Pan-STARRS1 (PS1) Medium Deep Field 04 survey. To estimate the variability amplitude, we used the normalized excess variance (σ 2 rms ) and probed variability on rest-frame timescales of several months and years by calculating σ 2 rms from different parts of our light curves. In addition, we derived the rest-frame optical PSD for our sources using continuous-time autoregressive moving average (CARMA) models. Results. We observe that the excess variance and the PSD amplitude are strongly anticorrelated with wavelength, bolometric luminosity, and Eddington ratio. There is no evidence for a dependency of the variability amplitude on black hole mass and redshift. These results suggest that the accretion rate is the fundamental physical quantity determining the rest-frame UV/optical variability amplitude of quasars on timescales of months and years. The optical PSD of all of our sources is consistent with a broken power law showing a characteristic bend at rest-frame timescales ranging between ∼100 and ∼300 days. The break timescale exhibits no significant correlation with any of the fundamental AGN parameters. The low-frequency slope of the PSD is consistent with a value of −1 for most of our objects, whereas the high-frequency slope is characterized by a broad distribution of values between ∼-2 and ∼-4. These findings unveil significant deviations from the simple damped random walk model that has frequently been used in previous optical variability studies. We find a weak tendency for AGNs with higher black hole mass to have steeper high-frequency PSD slopes.
SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV survey running in parallel to the eBOSS cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected AGN and galaxy cluster members detected in wide area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS targets: X-ray selected AGN candidates detected in the ROSAT All Sky and the XMMNewton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the WISE survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localised X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ∼12 000 ROSAT and ∼1500 XMM-Newton Slew survey sources which have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS program, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ∼7500 deg 2 for >85 percent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17
Aims. Upcoming large area sky surveys like Euclid and eROSITA, which are dedicated to studying the role of dark energy in the expansion history of the Universe and the three-dimensional mass distribution of matter, crucially depend on accurate photometric redshifts. The identification of variable sources, such as active galactic nuclei (AGNs), and the achievable redshift accuracy for varying objects are important in view of the science goals of the Euclid and eROSITA missions. Methods. We probe AGN optical variability for a large sample of X-ray-selected AGNs in the XMM-COSMOS field, using the multiepoch light curves provided by the Pan-STARRS1 (PS1) 3π and Medium Deep Field surveys. To quantify variability we employed a simple statistic to estimate the probability of variability and the normalized excess variance to measure the variability amplitude. Utilizing these two variability parameters, we defined a sample of varying AGNs for every PS1 band. We investigated the influence of variability on the calculation of photometric redshifts by applying three different input photometry sets for our fitting procedure. For each of the five PS1 bands g P1 , r P1 , i P1 , z P1 , and y P1 , we chose either the epochs minimizing the interval in observing time, the median magnitude values, or randomly drawn light curve points to compute the redshift. In addition, we derived photometric redshifts using PS1 photometry extended by GALEX/IRAC bands. Results. We find that the photometry produced by the 3π survey is sufficient to reliably detect variable sources provided that the fractional variability amplitude is at least ∼3%. Considering the photometric redshifts of variable AGNs, we observe that minimizing the time spacing of the chosen points yields superior photometric redshifts in terms of the percentage of outliers (33%) and accuracy (0.07), outperforming the other two approaches. Drawing random points from the light curve gives rise to typically 57% of outliers and an accuracy of ∼0.4. Adding GALEX/IRAC bands for the redshift determination weakens the influence of variability. Although the redshift quality generally improves when adding these bands, we still obtain not less than 26% of outliers and an accuracy of 0.05 at best, therefore variable sources should receive a flag stating that their photometric redshifts may be low quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.