Hip simulator studies have shown that wear in the polyethylene liners used for total hip replacements increased with the larger-diameter femoral balls and could also be exacerbated by third-body abrasion. However, they also indicated that the more highly cross-linked polyethylene (HXPE) bearings were more wear resistant than conventional polyethylene (CXPE) bearings. Unfortunately the HXPE bearings appeared to be particularly sensitive to adverse wear conditions. One simulator study in particular indicated that poly(methyl methacrylate) (PMMA) debris increased wear sixfold by means of two-body abrasive interactions rather than the supposed third-body abrasion or roughening effects of the Co-Cr surfaces. There has been no confirmation of such novel theories. Therefore the goal of this study was to investigate the sensitivity of large-diameter HXPE bearings to the third-body PMMA wear challenge in a hip simulator model. An orbital hip simulator was used in standard test mode with a physiological load profile. The 32 mm control liners were machined from moulded GUR1050 and gamma irradiated to 35 kGy under nitrogen (CXPE). The 44 mm liners were also from moulded blanks, gamma irradiated to 75 kGy, machined to shape, given a proprietary heat treatment, and sterilized by gas plasma (HXPE). As in the published simulator model, the study was conducted in three phases. In phase 1, all cups were run in standard ('clean') lubricant for 1.5 x 10(6) cycles duration. In phase 2, three CXPE cups and six HXPE cups were run for 2 x 10(6) cycles with a slurry of PMMA particles added to the lubricant. In phase 3, the implants were again run in 'clean' lubricant for 2 x 10(6) cycles duration. In addition, three HXPE cups were run as wear controls for 5.5 x 10(6) cycles duration in clean lubricant. In phase-1, the HXPE liners demonstrated twelvefold reduced wear compared with the CXPE controls. The 32 mm and 44 mm Co-Cr balls were judged of comparable roughnesses. However, the surface finish of HXPE liners was superior to that of CXPE liners. In phase-2 abrasion, wear rates increased sixfold and eighty-fold for CXPE and HXPE bearings respectively. These data confirmed that HXPE bearings were particularly sensitive to 'severe' test modes. The Co-Cr balls revealed numerous surface patches representing transferred PMMA with average transient roughness increased to 25 nm and 212 nm for the 32 mm and 44 mm balls respectively. These PMMA patches produced an aggressive two-body abrasion wear of the polyethylene. After cleaning, the ball roughness returned to near normal. Therefore the Co-Cr roughness was not an issue in this severe test mode. In phase 3, the wear decreased to near the index values of phase 1, while liner roughness dropped by more than 90 per cent. The control CXPE liners now demonstrated twice the wear of the HXPE, as would be predicted comparing the diameter and cross-linking algorithms. No previous study has correlated polyethylene roughness profiles to wear performance. In phase 2, PMMA abrasion created significant damag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.