We report on the development and characterization of the new compact infrared heterodyne receiver, iChips (Infrared Compact Heterodyne Instrument for Planetary Science). It is specially designed for ground-based observations of the terrestrial atmosphere in the mid-infrared wavelength region. Mid-infrared room temperature quantum cascade lasers are implemented into a heterodyne system for the first time. Their tunability allows the instrument to operate in two different modes. The scanning mode covers a spectral range of few wavenumbers continuously with a resolution of approximately ν ∆ν
≥ 105 . This mode allows the determination of the terrestrial atmospheric transmission. The staring mode, applied for observations of single molecular transition features, provides a spectral resolution of ν ∆ν ≥ 10 7 and a bandwidth of 1.4 GHz. To demonstrate the instrument's capabilities, initial observations in both modes were performed by measuring the terrestrial transmittance at 7.8 µm (∼ 1,285 cm −1 ) and by probing terrestrial ozone features at 8.6 µm (∼ 1,160 cm −1 ), respectively. The receivers characteristics and performance are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.