The influence of the Mg doping profile on the electroluminescence (EL) efficiency of (AlGaIn)N quantum well (QW) light-emitting diodes, grown by low-pressure metal-organic vapor-phase epitaxy on sapphire, has been investigated. The actual Mg profile close to the active region was found to be influenced by segregation as well as by diffusion during growth. In a first experiment, diffusion of the Mg dopants towards the QW region through a not intentionally doped narrow GaN spacer layer, separating the topmost GaInN quantum well from the AlGaN:Mg electron-blocking barrier, was controlled by the growth temperature of the AlGaN:Mg barrier and GaN:Mg contact layer. Starting from low growth temperatures, an increase in Mg concentration close to the active region results in an improved hole injection and thus increased EL efficiency. However, for a too high growth temperature, an excessive spread of the Mg atoms into the active region leads to nonradiative recombination in the QW active region and thus a reduction in EL output. In a second experiment, identical structures were prepared with the Mg-doped (Al)GaN layers grown at lower temperature to minimize Mg diffusion. Instead, the nominal Mg doping level in the GaN spacer layer was varied systematically. Secondary-ion-mass spectrometry revealed that almost identical Mg doping profiles close the QW active region, and in turn very similar EL efficiencies, can be achieved by both approaches when appropriate growth parameters are used.
Transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy were applied to study the metalorganic chemical vapor deposition of InGaN and the correlation between the structural properties and luminescence of GaN/InxGa1−xN-quantum well structures. A series of samples was grown varying only the growth duration for the InGaN under otherwise unaltered growth conditions. Composition analyses were carried out by measuring local lattice parameters from TEM images, which are directly related to the local In concentration. A rising average In concentration from 6.5% to 15.4% and a decreasing growth rate are observed with increasing growth duration. All samples show an inhomogeneous In distribution containing In-rich agglomerates with a size of only a few nanometers and less pronounced composition fluctuations on a scale of some 10 nm. The redshift of the PL peak energy with increasing quantum well thickness indicates that the luminescence is predominantly determined by the piezoelectric field.
The influence of nonradiative recombination processes on the output power P of InGaN light emitting devices (LEDs) with emission wavelength between 380 and 430 nm grown on sapphire substrates have been investigated. The electroluminescence intensity was studied as a function of the forward current I and the device temperature. The P–I curves of all LEDs show a super‐linear behaviour at low currents (between 80 μA and 1 mA) and a nearly linear characteristic around the operating forward current of 20 mA (equivalent to a current density of 44 A/cm2). The super‐linear behaviour is attributed to the saturation of nonradiative processes which also affect the output power at operating forward current. The reduction of the output power at 20 mA with increasing temperature is correlated with the super‐linear behaviour at low currents indicating that nonradiative processes are thermally activated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.