The aim was to compare bowel distension and diagnostic properties of magnetic resonance imaging of the small bowel with oral contrast (MRI per OS) with magnetic resonance enteroclysis (MRE). Forty patients with suspected Crohn's disease (CD) were examined with both MRI methods. MRI per OS was performed with a 6% mannitol solution and MRE with nasojejunal intubation and a polyethylenglycol solution. MRI protocol consisted of balanced fast field echo (B-FFE), T2 and T1 sequences with and without gadolinium. Two experienced radiologists individually evaluated bowel distension and pathological findings including wall thickness (BWT), contrast enhancement (BWE), ulcer (BWU), stenosis (BWS) and edema (EDM). The diameter of the small bowel was smaller with MRI per OS than with MRE (difference jejunum: 0.55 cm, p < 0.001; ileum: 0.35 cm, p < 0.001, terminal ileum: 0.09 cm, p = 0.08). However, CD was diagnosed with high diagnostic accuracy (sensitivity, specificity, positive and negative predictive values: MRI per OS 88%, 89%, 89%, 89%; MRE 88%, 84%, 82%, 89%) and inter-observer agreement (MRI per OS k = 0.95; MRE k = 1). In conclusion, bowel distension was inferior in MRI per OS compared to MRE. However, both methods diagnosed CD with a high diagnostic accuracy and reproducibility.
The purpose of this paper is to present a pulse sequence optimized to visualize human peripheral vessels. The optimized MR technique is a 3D multi-shot balanced non-SSFP gradient echo pulse sequence with fat suppression. Several imaging parameters were adjusted to find the best compromise between the contrast of vascular structures and muscle, fat, and bone. Most of the optimization was performed in the knee and calf regions using multi-channel SENSE coils. To verify potential clinical use, images of both healthy volunteers and volunteers with varicose veins were produced. The balanced non-SSFP sequence can produce high-spatial-resolution images of the human peripheral vessels without the need for an intravenous contrast agent. Both arteries and veins are displayed along with other body fluids. Due to the high spatial resolution of the axial plane source or reconstructed images, the need for procedures to separate arteries from veins is limited. We demonstrate that high signals from synovial joint fluid and cystic structures can be suppressed by applying an inversion prepulse but at the expense of reduced image signal-to-noise and overall image quality.
Our objective was to evaluate Gastrografin for MR bowel imaging. Twenty-three healthy volunteers in two randomised groups received 300 or 400 ml 50% Gastrografin, drunk continuously during 2 and 3 h, respectively. Images were applied during breath-hold in three orthogonal orientations. The balanced fast-field echo (BFFE) and balanced turbo field-echo (BTFE) sequences, with acquisition times from 13 to 25 s, were used before gadolinium (Gd) DTPA implying 1-to 2-mm-thick slices locally or 6-mm-thick slices through the entire gastrointestinal tract. The Gd-enhanced images were performed using a 3D T1-weighted FFE sequence with water selective excitation (Proset). Image quality, including bowel distention, homogeneity of opacification and wall conspicuity, were evaluated by two experienced reviewers, and the adverse reactions were recorded. Very good or excellent distention, homogeneity and wall conspicuity were achieved in the central segments from the ileum to the left colon flexure in 83-96% of cases, due to the adequate contrast media supply in these regions. Distention, homogeneity and delineation were good in the central segments of the remaining bowels. Diarrhoea was a major problem affecting all participants, followed by nausea. Provided that there is modern fast sequential technology, excellent MR imaging of the bowel can be achieved by the oral administration 50% diluted Gastrografin. Further studies are needed to refine the technique and optimise the quantity and concentration of Gastrografin in order to avoid or reduce adverse reactions.
The purpose of this paper is to present a new pulse sequence for visualizing slow flow. The new sequence consists of an initial Stejskal-Tanner flow sensitization part followed by a DEFT pulse and a spoiler gradient. A single-shot TSE readout train is then applied to sample the NMR signal. The sequence was initially tested using a simple flow phantom. To verify potential clinical use, both flow-sensitive MRCP and cerebrospinal fluid (CSF) images were produced. The phantom study proved the sequence sensitivity to flow in the range 0-1 cm/s. bVE-factors 1.5, 3, 6 and 12 were chosen. Within this flow velocity range, the signal dropped as predicted theoretically. This indicates that the method can be used to quantify flow. All anatomical features seen in a standard MRCP sequence were identified and the methods sensitivity to CSF flow was demonstrated by sagital images of the head. A new pulse sequence sensitive to slow flow has been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.