Between 1998 and 1999, control failure of powdery mildew (Podosphaera fusca) and downy mildew (Pseudoperonospora cubensis) by the strobilurin fungicides azoxystrobin and kresoxim-methyl was observed in cucumber-growing areas of Japan. Results from inoculation tests carried out on intact cucumber plants and leaf disks clearly showed the distribution of pathogen isolates highly resistant to azoxystrobin and kresoximmethyl. Fragments of the fungicide-targeted mitochondrial cytochrome b gene were polymerase chain reaction amplified from total pathogen DNA and their sequences analyzed to elucidate the molecular mechanism of resistance. A single point mutation (GGT to GCT) in the cytochrome b gene, resulting in substitution of glycine by alanine at position 143, was found in resistant isolates of downy mildew. This substitution in cytochrome b seemed to result in high resistance to strobilurins in this pathogen. The same mutation was found in some but not all resistant isolates of powdery mildew. This study suggests that a mutation at position 143 in the target-encoding gene, resulting in an amino acid substitution, was probably a major cause of the rapid development of high strobilurin resistance in these two pathogens.
The molecular mechanism of QoI fungicide resistance was studied using isolates of cucumber Corynespora leaf spot fungus (Corynespora cassiicola) and the eggplant leaf mold (Mycovellosiella nattrassii). In both pathogens, a mutation at position 143 from glycine to alanine (G143A) was detected in the cytochrome b gene that encodes for the fungicide-targeted protein. Moreover, the nucleotide sequence at amino acid position 143 was converted from GGT or GGA in sensitive (wild-type) to GCT or GCA in resistant (mutant-type) isolates. The methods of polymerase chain reaction restriction fragment length polymorphism commonly used for QoI resistance monitoring were employed successfully, leading to the amplified gene fragment from resistant isolates being cut with the restriction enzyme ItaI. However, heteroplasmy (the coexistence of wild-type and mutated alleles) was found when the resistant isolates of C. cassiicola, M. nattrassii, and Colletotrichum gloeosporioides (strawberry anthracnose fungus) were subcultured in the presence or absence of QoI fungicides. QoI resistance of cucumber powdery and downy mildew isolates persisted for a few years following the removal of the selection pressure imposed by the fungicide under both laboratory and commercial greenhouse conditions. The proportion of mutated sequences in cytochrome b gene decreased over time in the pathogen population. The protective efficacy of the full dose of azoxystrobin decreased when the populations of powdery and downy mildews contained resistant isolates at 10%. Using FMBIO, a fluorescence bio-imaging analyzer, the mutant allele from the QoI-resistant isolates could be detected at the level of 1%, whereas the detection sensitivity of ethidium-bromide-stained gels was approximately 10 times lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.