Abstract. The possible connections between the carbon balance of ecosystems and aerosol-cloud-climate interactions play a significant role in climate change studies. Carbon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is to cool the climate. Here, we investigated the connection between forest-atmosphere carbon exchange and aerosol dynamics in the continental boundary layer by means of multiannual data sets of particle formation and growth rates, of CO 2 fluxes, and of monoterpene concentrations in a Scots pine forest in southern Finland. We suggest a new, interesting link and a potentially important feedback among forest ecosystem functioning, aerosols, and climate: Considering that globally increasing temperatures and CO 2 fertilization are likely to lead to increased photosynthesis and forest growth, an increase in forest biomass would increase emissions of non-methane biogenic volatile organic compounds and thereby enhance organic aerosol production. This feedback mechanism couples the climate effect of CO 2 with that of aerosols in a novel way.
Abstract. Biogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2–3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5–3 nm particles during these formation events were 2.89/2.68 nmh−1, respectively; for 3-7 nm particles 4.26/4.03, and for 7–20 nm particles 8.90/7.58 nmh−1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34–1.8 nm) were 2400/1700 cm−3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba.
Abstract.A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ∼10:00 local time and lasted for 1-4 h. They were characterised by the appearance of a nucleation mode with a peak diameter of ∼10 nm. The freshly nucleated particles grew within 1-4 h up to sizes of 20-50 nm. The events occurred when solar intensity was high (∼1000 W m −2 ) and RH was low (∼60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth at sizes greater than 10 nm during the nucleation events. Although there was a possibility that the precursor vapours responsible for particle formation and growth had continental sources, on the balance of available data we would suggest that the precursors were most likely of marine/coastal origin. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ∼80 nm particles (average modal concentration during the event was 3200 cm −3 ). The Great BarrierCorrespondence to: Z. D. Ristovski (z.ristovski@qut.edu.au) Reef was the most likely source of precursor vapours responsible for this event.
Abstract. Biogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation (NPF) has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of NPF in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. Daytime aerosol formation took place on 52% of days with acceptable data. Median growth rates (GR) for negative/positive 1.3–3 nm particles were 2.29/2.02 nmh−1; for 3–7 nm particles 3.04/2.94 nmh−1; and for 7–20 nm particles 7.13/5.62 nmh−1, respectively. Intermediate ion growth rates were highest when the wind was blowing from the direction of the native Eucalypt forest, suggesting that the Eucalypts were the strongest source of condensable vapours. Average cluster ion (0.34 to 1.8 nm) concentrations were very high, 2400/1700 cm−3 for negative/positive ions compared to other measurements around the world. These high concentrations are probably the result of the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between nighttime and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared on 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.