The Asmari Formation has been studied in the subsurface at the Bibi Hakimeh, Marun and Ahwaz oilfields and in an outcrop section from the Khaviz anticline. It consists of approximately 400 m of cyclic platform limestones and dolostones with subordinate intervals of sandstone and shale. The method of Sr-isotope stratigraphy is well suited for dating these strata because of the rapid rate of change of marine 87 Sr/ 86 Sr during Asmari deposition (roughly 32-18 Ma) and the common presence of well-preserved macrofossils.Profiles of age against depth in the four areas show a decrease from higher stratigraphic accumulation rates in the lower Asmari to lower rates in the middle to upper part of the formation. There is also a trend towards less open-marine depositional conditions and increasing early dolomitization and anhydrite abundance above the lower part of the formation. These changes reflect the dynamics of platform progradation across the areas studied, from early deposition along relatively high accommodation margin to slope settings to later conditions of lower accommodation on the shelf top.Ages of sequence boundaries are estimated from the age-depth profiles at each locality, providing a framework for stratigraphic correlation. Asmari deposition began in early Rupelian time in the Bibi Hakimeh area, when the studied areas to the NW were accumulating basinal marl facies. Progradation of the platform across the Marun and Ahwaz areas took place in mid-Chattian time and somewhat later in the more basinward Khaviz area. Depositional sequences have durations of 1-3 Ma, whereas component cycles represent average time intervals of 100-300 Ky.Sr analyses of most dolomite, anhydrite and celestite samples plot close to or below the macrofossil age-depth trend for each locality, indicating formation from waters preserving seawater 87 Sr/ 86 Sr approximately contemporaneous with or slightly younger than the time of sediment deposition. Local deviations from this trend are interpreted as indicating episodes of seepagereflux and also a contribution of Sr from non-marine sources during formation of the Gachsaran cap rock anhydrite.
Outcrop analogue studies can significantly improve the understanding of fracture distribution and their impact on fluid flow in hydrocarbon reservoirs. In particular, the outcrops may reveal details on the relationships between mechanical stratigraphy and fracture characteristics. This has been investigated in an integrated sedimentological-structural geological study in the Aquitanian sequence of the Asmari Formation on the NE limb of the Khaviz Anticline in the Zagros foothills in SW Iran. The Aquitanian sequence was deposited in a platform top setting and is characterized by well-defined bedding planes and relatively thin layers (<4 m) with rapid changes in textures from laminated peritidal mudstones to bioclast and ooid grainstones. Fractures in the studied area dominantly strike parallel to the fold axis, have a high angle to bedding and are stratabound. In the literature it is often reported that fracture spacing or the inverse fracture intensity (FI) is controlled by the mechanical layer thickness (MLT). However, in the present study area a rather poor correlation between FI and MLT was observed. Instead, the Dunham texture appears to be more important for the FI. Mud-supported textures (mudstone and wackestone) have higher FI than grain-supported (packstone and grainstone) ones. The degree of dolomitization does not appear to have any significant effect on FI within each texture class. A strong relationship between FI and MLT is observed generally in cases where there has been one single phase of extension and when interbed contacts are weak, e.g. interbedded competent limestones and incompetent shales. However, in the present study area a rather complex deformation history exists and well-developed shales between fractured carbonate layeres are lacking. It is suggested that in such cases the MLT is of minor importance for the FI, which is controlled by the texture.
The carbonate reservoirs in the Late Oligocene—Early Miocene Asmari Formation in the Dezful Embayment of SW Iran are characterized by low matrix permeability, and effective drainage is dependent on the occurrence of open fractures. Limited information on fracture orientation and fracture density is available from core and borehole image data, and high-quality/high-resolution three-dimensional seismic is often lacking in this area. Well and core data do not contain information on important fracture parameters like length distribution, crosscutting relationships, fracture density v. lithology and bed thickness. The understanding of fracture distribution and formation in the region and their effects on fluid flow has been greatly improved by the use of outcrop analogue data. Exposures of the Asmari Formation in the Khaviz Anticline are in close vicinity to the giant hydrocarbon fields. The Khaviz Anticline has a similar geometry and structural history to the major hydrocarbon fields in the area, and represents an excellent analogue for these. Two types of fracture features were observed: diffuse fracturing and fracture swarms. The diffuse fractures form networks and comprise structures grouped into four fractures sets, which are the typical for this type of anticline. Two orthogonal fracture sets are oriented parallel and perpendicular to the fold axis, and two conjugate fracture sets are oblique to the fold axis with their obtuse angle intersecting the trend of the fold axis. The fractures are typically stratabound, sub-perpendicular to bedding and commonly about the bounding stratigraphic surfaces. To a large extent the density and height of fractures in the Asmari Formation are controlled by the mechanical stratigraphy, which is controlled by the depositional environment and cycles. These outcrop data have been essential in the generation of discrete fracture network (DFN) models and the population of the fracture properties in the reservoir models.
We present a geochemical profile through a 445-m (1459.9-ft) section of shallow-water carbonate platform strata in the upper part of the Khuff Formation. The Permian-Triassic boundary (PTB) is recognized in this section based on the immediately preceding negative shift in bulk-rock carbonate carbon isotope composition (equivalent to the end-Permian extinction horizon), combined with biostratigraphic control from nearby wells. These strata show an abrupt and long-lasting decrease in bulk-rock uranium (U) content coincident with the carbon isotope shift. Because of low siliciclastic content and the consequently low potassium and thorium of these carbonates, the decrease in U is clearly reflected in the total gamma-ray (GR) profile recorded by wire-line logging. Published log curves show similar distinctive GR profiles throughout a large area of the Middle East, indicating that U depletion across the PTB is a regional characteristic. This feature cannot be explained as diagenetic and is not related to the organic matter content of the host sediments, but it is suggested to reflect the global depletion of U in earliest Triassic seawater, caused by the abrupt onset of deep-ocean anoxia and the resulting increase in U precipitation in oxygen-poor sediments. This explanation carries the implication that similar U depletion should be characteristic of lowermost Triassic carbonates from shallow-water (oxygenated) settings worldwide. Analogous signatures of U depletion should also have developed in shallow-water GEOLOGIC NOTE carbonates deposited contemporaneously with episodes of deep-ocean anoxia during other periods of geological time. These predictions can be tested by high-accuracy U profiling of other well-characterized carbonate successions, potentially yielding a new approach for tracking the degree of oceanic circulation throughout Earth's history.
Dolomitisation is an important factor controlling reservoir quality in the Asmari Formation in many producing fields in SW Iran. Dolostones have higher average porosities than limestones. Petrographic and geochemical studies have been used to determine the causes of Asmari dolomitisation at the Bibi Hakimeh and Marun fields and at the Khaviz anticline. The formation is generally characterized by a large‐scale trend of upward‐decreasing accommodation. Basal strata were deposited under relatively open‐marine, high‐energy conditions, whereas the Middle to Upper Asmari succession was deposited in relatively protected settings with more frequent evidence of exposure and evaporitic conditions. There is a general upward increase in the abundance of both anhydrite (occurring as nodules and cement) and dolomite. Two main types of dolomite fabric are recognised, reflecting the textures of the precursor limestones: (1) finely crystalline pervasive dolomite (commonly <20μ) replacing mud‐rich facies; and (2) combinations of finely crystalline replacive dolomite and surrounding areas of coarser dolomite cement (crystals up to 100μ) in grain‐supported facies. Fluid inclusion data indicate that finely crystalline dolomites formed at low temperatures (ca. <50°C), while the coarser dolomite formed at higher temperatures (50–;140°C). Whole rock‐carbonate oxygen and carbon isotope analyses of pure dolostone samples show no apparent correlation with either depositional or diagenetic textures: δ18O is generally 0 to 2.7‰ PDB, and δ13C is −1 to 4‰ PDB. The importance of evaporated seawater to Asmari dolomitisation is indicated by the ubiquitous occurrence of felty‐textured anhydrite nodules in dolostone beds and the presence of high‐salinity fluid inclusions in dolomite. The derivation of dolomitising fluids from contemporaneous seawater is supported by the general correspondence between age estimates derived from the strontium isotope composition of anhydrites and dolomites and those derived from stratigraphic considerations. This suggested synsedimentary dolomitisation. Dolomitisation of the upper half of the Asmari Formation may have occurred as a result of two syn‐sedimentary mechanisms: (1) by the reflux of evaporative brines concentrated in shallow lagoons or sabkhas, through immediately underlying strata (mainly during highstands); and (2) by the flushing of platform‐top carbonates by basinal evaporated waters during lowstand/early transgression. Continued dolomitisation during deeper burial is supported by the presence of high‐temperature fluid inclusions and iron‐rich crystal rims. Dolomite within the lower part of the Asmari Formation probably mostly formed during burial as a result of compaction of, and fluid exclusion from, the underlying Pabdeh marls and shales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.