The efficacy of silymarin treatment in preventing biochemical and histological alterations in CCL4-induced liver cirrhosis in rats was studied. Four groups of rats were treated with: (1) CCL4; (2) mineral oil; (3) CCL4 + silymarin; and (4) silymarin. All animals were sacrificed 72 h after the end of treatments. The activities of alkaline phosphatase (alk. phosp.), gamma-glutamyl transpeptidase (GGTP), glutamic pyruvic transaminase (GPT) and glucose-6-phosphatase (G6Pase), and bilirubin content were determined in serum. Na+, K+-ATPase and Ca++-ATPase activities were measured in isolated plasma membranes. Lipoperoxidation, triglycerides (TG), and glycogen contents were also measured in liver homogenates. Liver cirrhosis was evidenced by significant increases in liver collagen, lipoperoxidation, serum activities of alk. phosp., GGTP, GPT, G6Pase, bilirubin content, and liver TG. Activities of ATPases determined in plasma membranes were significantly reduced, as was liver glycogen content. Silymarin cotreatment (50 mg/kg b.wt) completely prevented all the changes observed in CCL4-cirrhotic rats, except for liver collagen content which was reduced only 30% as compared to CCL4-cirrhotic rats. Silymarin protection can be attributed to the agent's antioxidant and membrane-stabilizing actions.
Economic analysis shows that protein separation and purification are a very important aspect of biomolecules production and processing. This is particularly true for protein processing which, because of the complexity of the starting material, often requires many steps to reach the levels of purity required for medical and food applications. The separation specialists' task is to develop safe and simple processes to achieve products with a high level of purity. On a large scale, chromatography of proteins is not an easily applied method, although on a laboratory scale it is very effective and relatively simple. When it is scaled up, shortcomings such as discontinuity in the process, slow protein diffusion and large pressure drops in the system are seen. For these reasons a substantial research effort has been directed toward the use of aqueous two-phase systems (ATPSs) to replace the initial steps in protein purification and chromatography. This article reviews the chronology and main ATPS fundamentals and discuss the broader applications of this type of system in the extraction and separation of biomolecules
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.