In the dentate gyrus of adult female meadow voles, a high dose of estradiol benzoate (EB) increases (within 4 h) then decreases (within 48) the number of dividing progenitor cells (Ormerod BK, Galea LAM. 2001. Reproductive status regulates cell proliferation within the dentate gyrus of the adult female meadow vole: A possible regulatory role for estradiol. Neurosci 2:169-179). We investigated whether time-dependent EB exposure differentially influences the number of new granule cells produced in the adult female rat dentate gyrus and whether EB-stimulated adrenal activity mediates the decrease in cell proliferation. Ovariectomized rats received either an EB (10 microg in 0.1 mL) or vehicle (0.1 mL) injection either 4 or 48 h (Experiment 1) before a BrdU injection (200 mg/kg) and were perfused 24 h later to assess the number of new cells. Relative to vehicle, the number of new cells increased following a 4 h exposure (p < or = 0.04) but decreased following a 48 h exposure (p < or = 0.006) to EB. In Experiment 2, the number of new cells within the dentate gyrus of ovariectomized and adrenalectomized females did not significantly differ between groups exposed to EB versus vehicle for 48 h prior to BrdU administration, suggesting the decreased number of new cells observed within the dentate gyrus of adrenal-intact adult female rats is mediated by EB-stimulated adrenal activity. We conclude that estradiol dynamically regulates cell proliferation within the dentate gyrus of adult female rats in the time-dependent manner observed previously in voles and suppresses cell proliferation by influencing adrenal steroids. Investigating how estradiol dynamically regulates neurogenesis could provide insight into the mechanisms by which the proliferation of progenitor cells is controlled within the adult rodent hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.