Spin excitations in the Kondo semiconductor CeNiSn have been studied in a wide Q-range and in the energy range of h(cross) omega =1.2-7 meV by means of single-crystal neutron scattering. The magnetic fluctuation at low temperatures in this energy range is dominated by the easy a-axis component Im chi ad. Below the coherence temperature of 20 K, two dynamic antiferromagnetic correlations develop as excitation peaks at h(cross) omega =2 and 4 meV. The 4 meV excitation appears at Q=(Qa. 1/2 +n, Qc) where Qc and Qc are arbitrary and n is an integer, which indicates that the correlation is quasi-one dimensional along the b-axis. The 2 meV excitation appears around Q=(0,0,I) and (0,1,0), which shows three-dimensional Q-dependence. These two excitations reflect the nature of the Kondo coherent state of CeNiSn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.