Fatigue testing under fully reversed axial loading (R=−1) and zero‐to‐tension axial loading (R= 0) was carried out on AISI 4140 gas‐nitrided smooth specimens. Three different treatment durations were investigated in order to assess the effect of nitriding depth on fatigue strength in high cycle fatigue. Complete specimens characterization, i.e., hardness and residual stresses profiles (including measurement of stabilized residual stresses) as well as metallographic and fractographic observations, was achieved to analyse fatigue behaviour. Fatigue of the nitrided steel is a competition between a surface crack growing in a compressive residual stress field and an internal crack or ‘fish‐eye’ crack growing in vacuum. Fatigue life increases with nitriding depth until surface cracking is slow enough for failure to occur from an internal crack. Unlike bending, in axial fatigue ‘fish‐eye’ cracks can initiate anywhere in the core volume under uniform stress. In these conditions, axial fatigue performance is lower than that obtained under bending and nitriding depth may have no more influence. In order to interpret the results, special attention was given to the effects of compressive residual stresses on the surface short crack growth (closure effect) as well as the effects of internal defect size on internal fatigue lives. A superimposed tensile mean stress reduces the internal fatigue strength of nitrided steel more than the surface fatigue strength of the base metal. Both cracking mechanisms are not equally sensitive to mean stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.