Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentrationtime curve (AUC) of PDA by 3.1-fold (dosed alone; P , 0.05), and 3.2-fold (coadministered with FSM; P , 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P . 0.05) and 2.1-fold (P , 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R ) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.
Inside-out-oriented membrane vesicles are useful tools to investigate whether a compound can be an inhibitor of efflux transporters such as multidrug resistance-associated protein 2 (MRP2). However, because of technical limitations of substrate diffusion and low dynamic uptake windows for interacting drugs used in the clinic, estradiol-17-glucuronide (E17G) remains the probe substrate that is frequently used in MRP2 inhibition assays. Here we recapitulated the sigmoidal kinetics of MRP2-mediated transport of E17G, with apparent Michaelis-Menten constant () and values of 170 ±17M and 1447 ± 137 pmol/mg protein/min, respectively. The Hill coefficient (2.05 ± 0.1) suggests multiple substrate binding sites for E17G transport with cooperative interactions. Using E17G as a probe substrate, 51 of 97 compounds tested (53%) showed up to 6-fold stimulatory effects. Here, we demonstrate for the first time that coproporphyrin-I (CP-I) is a MRP2 substrate in membrane vesicles. The uptake of CP-I followed a hyperbolic relationship, adequately described by the standard Michaelis-Menten equation (apparent and values were 7.7 ± 0.7 M and 48 ± 11 pmol/mg protein/min, respectively), suggesting the involvement of a single binding site. Of the 47 compounds tested, 30 compounds were inhibitors of human MRP2 and 8 compounds (17%) stimulated MRP2-mediated CP-I transport. The stimulators were found to share the basic backbone structure of the physiologic steroids, which suggests a potential in vivo relevance of in vitro stimulation of MRP2 transport. We concluded that CP-I could be an alternative in vitro probe substrate replacing E17G for appreciating MRP2 interactions while minimizing potential false-negative results for MRP2 inhibition due to stimulatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.