Human users find difficult to remember long cryptographic keys. Therefore, researchers, for a long time period, have been investigating ways to use biometric features of the user rather than memorable password or passphrase, in an attempt to produce tough and repeatable cryptographic keys. Our goal is to integrate the volatility of the user's biometric features into the generated key, so as to construct the key unpredictable to a hacker who is deficient of important knowledge about the user's biometrics. In our earlier research, we have incorporated multiple biometric modalities into the cryptographic key generation to provide better security. In this paper, we propose an efficient approach based on multimodal biometrics (Iris and fingerprint) for generating a secure cryptographic key, where the security is further enhanced with the difficulty of factoring large numbers. At first, the features, minutiae points and texture properties are extracted from the fingerprint and iris images respectively. Then, the extracted features are fused at the feature level to obtain the multi-biometric template. Finally, a multi-biometric template is used for generating a 256-bit cryptographic key. For experimentation, we have used the fingerprint images obtained from publicly available sources and the iris images from CASIA Iris Database. The experimental results have showed that the generated 256-bit cryptographic key is capable of providing better user authentication and better security.
Human users have a tough time remembering long cryptographic keys. Therefore, researchers, for a long, period of time have been exploratory ways to utilize biometric features of the user instead of a memorable password or passphrase, in an effort to create strong and repeatable cryptographic keys. Our aim is to incorporate the volatility of the user's biometric features into the generated key, so as to make the key unguessable to an attacker lacking significant knowledge of the user's biometrics. We go one step further trying to incorporate multiple biometric modalities into cryptographic key generation so as to provide better security. In this article, we propose an efficient approach based on multimodal biometrics (Iris and fingerprint) for generation of secure cryptographic key. The proposed approach is composed of three modules namely, (i) Feature extraction, (ii) Multimodal biometric template generation and (iii) Cryptographic key generation. Initially, the features, minutiae points and texture properties are extracted from the fingerprint and iris images respectively. Subsequently, the extracted features are fused together at the feature level to construct the multi-biometric template. Finally, a 256-bit secure cryptographic key is generated from the multi-biometric template. For experimentation, we have employed the fingerprint images obtained from publicly available sources and the iris images from CASIA Iris Database. The experimental results illustrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.